Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(6): 1360-1371, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37881849

RESUMO

Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature. Thus, we compared fiber type distribution, fiber type grouping, and the prevalence of atrophic myofibers (≤1,494 µm2) in strength-trained (OS) versus endurance-trained (OE) master athletes and compared the results to recreationally active older adults (all >70 yr, OC) and young habitually active references (<30 yr, YC). Immunofluorescent stainings were performed on biopsy samples from vastus lateralis, along with leg press maximal strength and RFD measurements. OS demonstrated similar type II fiber distribution (OS: 52.0 ± 16.4%; YC: 51.1 ± 14.4%), fiber type grouping, maximal strength (OS: 170.0 ± 18.9 kg, YC: 151.0 ± 24.4 kg), and RFD (OS: 3,993 ± 894 N·s-1, YC: 3,470 ± 1,394 N·s-1) as young, and absence of atrophic myofibers (OS: 0.2 ± 0.7%; YC: 0.1 ± 0.4%). In contrast, OE and OC exhibited more atrophic fibers (OE: 1.2 ± 1.0%; OC: 1.1 ± 1.4%), more grouped fibers, and smaller proportion of type II fibers (OE: 39.3 ± 11.9%; OC: 35.0 ± 12.4%) than OS and YC (all P < 0.05). In conclusion, strength-trained master athletes were characterized by similar muscle morphology as young, which was not the case for recreationally active or endurance-trained old. These results indicate that strength training may preserve type II fibers with advancing age in older men, likely as a result of chronic use of high contractile force generation.NEW & NOTEWORTHY Aging is associated with loss of fast-twitch type II myofibers, motor unit remodeling, and grouping of myofibers. This study reveals, for the first time, that strength training preserves neural innervation of type II fibers, resulting in similar myofiber type distribution and grouping in life-long strength-trained master athletes as young moderately active adults. In contrast, life-long endurance-trained master athletes and recreationally active old adults demonstrated higher proportion of type I fibers accompanied by more marked grouping of type I myofibers, and more atrophic fibers compared with strength-trained master athletes and young individuals. Thus, strength training should be utilized as a training modality for preservation of fast-twitch musculature, maximal muscle strength, and rapid force capacity (RFD) with advancing age.


Assuntos
Treino Aeróbico , Masculino , Humanos , Idoso , Fibras Musculares Esqueléticas/fisiologia , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Força Muscular/fisiologia , Fenótipo , Músculo Esquelético/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia
2.
Cell Biochem Biophys ; 81(3): 533-542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37470932

RESUMO

Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.


Assuntos
Mucopolissacaridose II , Humanos , Mucopolissacaridose II/complicações , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/diagnóstico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/uso terapêutico , Biomarcadores , Moléculas de Adesão de Célula Nervosa/uso terapêutico
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499451

RESUMO

Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.


Assuntos
Moléculas de Adesão de Célula Nervosa , Sialiltransferases , Animais , Moléculas de Adesão de Célula Nervosa/metabolismo , Sialiltransferases/metabolismo , Ácidos Siálicos/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos , Mamíferos/metabolismo
4.
Cell Prolif ; 54(7): e13078, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101282

RESUMO

OBJECTIVES: Salivary gland regeneration is closely related to the parasympathetic nerve; however, the mechanism behind this relationship is still unclear. The aim of this study was to evaluate the relationship between the parasympathetic nerve and morphological differences during salivary gland regeneration. MATERIALS AND METHODS: We used a duct ligation/deligation-induced submandibular gland regeneration model of Sprague-Dawley (SD) rats. The regenerated submandibular gland with or without chorda lingual (CL) innervation was detected by haematoxylin-eosin staining, real-time PCR (RT-PCR), immunohistochemistry and Western blotting. We counted the number of Ki67-positive cells to reveal the proliferation process that occurs during gland regeneration. Finally, we examined the expression of the following markers: aquaporin 5, cytokeratin 7, neural cell adhesion molecule (NCAM) and polysialyltransferases. RESULTS: Intact parasympathetic innervation promoted submandibular gland regeneration. The process of gland regeneration was significantly repressed by cutting off the CL nerve. During gland regeneration, Ki67-positive cells were mainly found in the ductal structures. Moreover, the expression of NCAM and polysialyltransferases-1 (PST) expression in the innervation group was significantly increased during early regeneration and decreased in the late stages. In the denervated submandibular glands, the expression of NCAM decreased during regeneration. CONCLUSIONS: Our findings revealed that the regeneration of submandibular glands with intact parasympathetic innervation was associated with duct cell proliferation and the increased expression of PST and NCAM.


Assuntos
Sistema Nervoso Parassimpático/fisiologia , Glândula Submandibular/fisiologia , Animais , Proliferação de Células , Antígeno Ki-67/metabolismo , Masculino , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Sistema Nervoso Parassimpático/cirurgia , Ratos , Ratos Sprague-Dawley , Regeneração/fisiologia , Ductos Salivares/citologia , Ductos Salivares/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Glândula Submandibular/patologia , Regulação para Cima
5.
Cancer ; 126(24): 5303-5310, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32914879

RESUMO

BACKGROUND: Lorvotuzumab mertansine (IMGN901) is an antibody-drug conjugate linking an antimitotic agent (DM1) to an anti-CD56 antibody (lorvotuzumab). Preclinical efficacy has been noted in Wilms tumor, rhabdomyosarcoma, and neuroblastoma. Synovial sarcoma, malignant peripheral nerve sheath tumor (MPNST), and pleuropulmonary blastoma also express CD56. A phase 2 trial of lorvotuzumab mertansine was conducted to assess its efficacy, recommended phase 2 dose, and toxicities. METHODS: Eligible patients had relapsed after or progressed on standard therapy for their tumor type. Lorvotuzumab mertansine (110 mg/m2 per dose) was administered at the adult recommended phase 2 dose intravenously on days 1 and 8 of 21-day cycles. Dexamethasone premedication was used. Pharmacokinetic samples, peripheral blood CD56-positive cell counts, and tumor CD56 expression were assessed. RESULTS: Sixty-two patients enrolled. The median age was 14.3 years (range, 2.8-29.9 years); 35 were male. Diagnoses included Wilms tumor (n = 17), rhabdomyosarcoma (n = 17), neuroblastoma (n = 12), synovial sarcoma (n = 10), MPNST (n = 5), and pleuropulmonary blastoma (n = 1). Five patients experienced 9 dose-limiting toxicities: hyperglycemia (n = 1), colonic fistula (n = 1) with perforation (n = 1), nausea (n = 1) with vomiting (n = 1), increased alanine aminotransferase in cycle 1 (n = 2), and increased alanine aminotransferase in cycle 2 (n = 1) with increased aspartate aminotransferase (n = 1). Non-dose-limiting toxicities (grade 3 or higher) attributed to lorvotuzumab mertansine were rare. The median values of the maximum concentration, half-life, and area under the curve from zero to infinity for DM1 were 0.87 µg/mL, 35 hours, and 27.9 µg/mL h, respectively. Peripheral blood CD56+ leukocytes decreased by 71.9% on day 8. One patient with rhabdomyosarcoma had a partial response, and 1 patient with synovial sarcoma achieved a delayed complete response. CONCLUSIONS: Lorvotuzumab mertansine (110 mg/m2 ) is tolerated in children at the adult recommended phase 2 dose; clinical activity is limited.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Maitansina/análogos & derivados , Neuroblastoma/tratamento farmacológico , Neurofibrossarcoma/tratamento farmacológico , Blastoma Pulmonar/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico , Sarcoma Sinovial/tratamento farmacológico , Tumor de Wilms/tratamento farmacológico , Adolescente , Adulto , Anticorpos Monoclonais/efeitos adversos , Área Sob a Curva , Antígeno CD56/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Maitansina/administração & dosagem , Maitansina/efeitos adversos , Neuroblastoma/metabolismo , Neurofibrossarcoma/metabolismo , Blastoma Pulmonar/metabolismo , Rabdomiossarcoma/metabolismo , Sarcoma Sinovial/metabolismo , Análise de Sobrevida , Resultado do Tratamento , Tumor de Wilms/metabolismo , Adulto Jovem
6.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824359

RESUMO

Polysialic acid (polySia/PSA) is an anionic glycan polymer of sialic acid, and it mostly modifies the neural cell adhesion molecule (NCAM) in mammalian brains. Quality and quantity of the polySia of the polySia-NCAM is spatio-temporally regulated in normal brain development and functions, and their impairments are reported to be related to diseases, such as psychiatric disorders and cancers. Therefore, precise understanding of the state of polySia-NCAM structure would lead to the diagnosis of diseases for which their suitable evaluation methods are necessary. In this study, to develop these evaluation methods, structures of polySia-NCAM from mouse brains at six different developmental stages were analyzed by several conventional and newly developed methods. Integrated results of these experiments clearly demonstrated the existence of different types of polySia-NCAMs in developing brains. In addition, combinational analyses were shown to be useful for precise understanding of the quantity and quality of polySia, which can provide criteria for the diagnosis of diseases.


Assuntos
Encéfalo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Processamento de Proteína Pós-Traducional , Ácidos Siálicos/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Cell Neurosci ; 107: 103527, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32634575

RESUMO

Vision loss has long since been considered irreversible after a critical period; however, there is potential to restore limited vision, even in adulthood. This phenomenon is particularly pronounced following complete loss of vision in the dominant eye. Adult neural cell adhesion molecule (NCAM) knockout mice have an age-related impairment of visual acuity. The underlying cause of early deterioration in visual function remains unknown. Polysialylated (PSA) NCAM is involved in different forms of neural plasticity in the adult brain, raising the possibility that NCAM plays a role in the plasticity of the visual cortex, and therefore, in visual ability. Here, we examined whether PSA-NCAM is required for visual cortical plasticity in adult C57Bl/6J mice following deafferentation and long-term monocular deprivation. Our results show that elevated PSA in the contralateral visual cortex of the reopened eye is accompanied by changes in other markers of neural plasticity: increased brain-derived neurotrophic factor (BDNF) levels and degradation of perineuronal nets (PNNs). The removal of PSA-NCAM in the visual cortex of these mice reduced BDNF expression, decreased PNN degradation, and resulted in impaired recovery of visual acuity after optic nerve transection and chronic monocular deprivation. Collectively, our results demonstrate that PSA-NCAM is necessary for the reactivation of visual cortical plasticity and recovery of visual function in adult mice. It also offers a potential molecular target for the therapeutic treatment of cortically based visual impairments.


Assuntos
Encéfalo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Ácidos Siálicos/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Traumatismos do Nervo Óptico/metabolismo
8.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817246

RESUMO

Aging represents the accumulation of changes in an individual over time, encompassing physical, psychological, and social changes. Posttranslational modifications of proteins such as glycosylation, including sialylation or glycation, are proposed to be involved in this process, since they modulate a variety of molecular and cellular functions. In this study, we analyzed selected posttranslational modifications and the respective proteins on which they occur in young and old mouse brains. The expression of neural cell adhesion molecule (NCAM), receptor for advanced glycation endproducts (RAGE), as well as the carbohydrate-epitopes paucimannose and high-mannose, polysialic acid, and O-GlcNAc were examined. We demonstrated that mannose-containing glycans increased on glycoproteins in aged mouse brains and identified synapsin-1 as one major carrier of paucimannose in aged brains. In addition, we found an accumulation of so-called advanced glycation endproducts, which are generated by non-enzymatic reactions and interfere with protein function. Furthermore, we analyzed the expression of sialic acid and found also an increase during aging.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Produtos Finais de Glicação Avançada/metabolismo , Glicoproteínas/análise , Glicosilação , Masculino , Manose/química , Manose/metabolismo , Espectrometria de Massas , Camundongos , Ácido N-Acetilneuramínico/análise , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
9.
Exp Cell Res ; 371(2): 372-378, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30153455

RESUMO

The neural cell adhesion molecule (NCAM) is important for neural development and for plasticity in adult brain. Previous studies demonstrated a calmodulin-dependent import of a transmembrane fragment of NCAM into the nucleus that regulates gene expression. In a protein macroarray we identified importin-ß1 as a potential interaction partner of NCAM's cytoplasmic tail. The interaction was verified and an importin-ß1-dependent import of NCAM into the nucleus could be demonstrated using quantitative immunofluorescence analysis. Generation of NCAM deletion mutants revealed that the last amino acids of the cytoplasmic region of NCAM are dispensable whereas other parts of NCAM's cytoplasmic tail take part in its nuclear translocation. With this study we propose an alternative nuclear route for NCAM via the classical importin-mediated import.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Células COS , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Chlorocebus aethiops , Citosol/ultraestrutura , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Neurônios/ultraestrutura , Análise Serial de Proteínas , Ligação Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/genética , beta Carioferinas/genética
10.
Histopathology ; 72(7): 1164-1171, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29392752

RESUMO

AIMS: Cellular senescence plays a role in tumour suppression and in the pathogenesis of various non-neoplastic diseases, including primary biliary cholangitis and other adult cholangiopathies. Less is known about the role of cellular senescence in cholangiopathies in children. With that in mind, we examined the expression of senescence-associated cell cycle regulators in biliary atresia, the most common form of paediatric obliterative cholangiopathy. METHODS AND RESULTS: The expression of senescence-associated cell cycle regulators (p16Ink4a and p21WAF1/Cip1 ) and a ductular reaction related marker (neural cell adhesion molecule: NCAM) was examined in bile ducts and bile ductules in liver samples taken from the patients with biliary atresia [n = 80; including 23 samples at the time of the Kasai procedure (KP) and 63 obtained from the explanted liver (LT) (six cases with samples at both surgical stages of disease)] and from appropriate controls (n = 17). The degree of ductular reaction and cholestasis was significantly more extensive in LT than KP (P < 0.01). The expression of p16INK4a and NCAM was significantly more extensive in bile ducts and bile ductules in ductular reaction in both KP and LT compared to controls and in LT compared to KP (P < 0.05). The expression of p21WAF1/Cip1 was significantly more extensive in bile ducts and bile ductules in KP compared to both LT and controls (P < 0.01). CONCLUSIONS: Cellular senescence may play a role in the progression of bile duct loss in biliary atresia in a manner similar to that of adult cholangiopathies.


Assuntos
Atresia Biliar/metabolismo , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Atresia Biliar/patologia , Atresia Biliar/cirurgia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Transplante de Fígado , Masculino
11.
J Physiol ; 595(13): 4127, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459127
12.
Neurosci Lett ; 644: 67-75, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28213069

RESUMO

Currently, in clinical practice there is no efficient way to overcome the sequences of neurodegeneration after spinal cord traumatic injury. Using a new experimental model of spinal cord contusion injury on miniature pigs, we proposed to deliver therapeutic genes encoding vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) to the damaged area, using umbilical cord blood mononuclear cells (UCBC). In this study, genetically engineered UCBC (2×106 cells in 200 ml of saline) were injected intrathecally to mini-pigs 10days after SCI. Control and experimental mini pigs were observed for 60days after surgery. Histological, electrophysiological, and clinical evaluation demonstrated significant improvement in animal treated with genetically engineered UCBCs. Difference in recovery of the somatosensory evoked potentials and in histological findings in control and treated animals support the positive effect of the gene-cell constriction for recovery after spinal cord injury. Results of this study suggest that transplantation of UCBCs simultaneously transduced with three recombinant adenoviruses Ad5-VEGF, Ad5-GDNF and Ad5-NCAM represent a novel potentially successful approach for treatment of spinal cord injury.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Modelos Animais de Doenças , Terapia Genética/métodos , Leucócitos Mononucleares/transplante , Traumatismos da Medula Espinal , Adenoviridae/genética , Animais , Feminino , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Moléculas de Adesão de Célula Nervosa/genética , Projetos Piloto , Recuperação de Função Fisiológica , Suínos , Porco Miniatura , Fator A de Crescimento do Endotélio Vascular/genética
13.
Mol Neurobiol ; 54(6): 4756-4763, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27495938

RESUMO

Current treatment options of chronic, progressive degenerative neuropsychiatric conditions offer only marginal efficacy, and there is no therapy which arrests or even reverses these diseases. Interest in genetic engineering and cell-based approaches have constantly been increasing, although most of them so far proved to be fruitless or at best provided very slight clinical benefit. In the light of the highly complex patho-mechanisms of these maladies, the failure of drugs aimed at targeting single molecules is not surprising. In order to improve their effectiveness, the role of a unique triple-combination gene therapy was investigated in this study. Intravenous injection of human umbilical cord blood mononuclear cell (hUCBMC) cotransduced with adenoviral vectors expressing vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) resulted in prominent increase of life span and performance in behavioral tests in amyotrophic lateral sclerosis (ALS). Expression of the recombinant genes in hUCBMCs was confirmed as soon as 5 days after transduction by RT-PCR, and cells were detectable for as long as 1 month after grafting in lumbar spinal cord by immunofluorescent staining. Xenotransplantation of cells into mice blood without any immunosuppression demonstrated a high level of hUCBMCs homing and survivability in the central nervous system (CNS), most conspicuously in the spinal cord, but not in the spleen or liver. This study confirms an increased addressed homing and notable survivability of triple-transfected cells in lumbar spinal cord, yielding a remarkably enhanced therapeutic potential of hUCBMCs overexpressing neurotrophic factors.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Sangue Fetal/citologia , Terapia Genética , Esclerose Lateral Amiotrófica/patologia , Animais , Comportamento Animal , Contagem de Células , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Vértebras Lombares/patologia , Camundongos Transgênicos , Análise de Sobrevida , Resultado do Tratamento
14.
Mol Neurobiol ; 54(7): 5709-5719, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27660262

RESUMO

Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.


Assuntos
Biomarcadores/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estresse Oxidativo/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo
15.
Oncotarget ; 7(36): 57581-57592, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27557501

RESUMO

There is an urgent need for new tools for the rapid diagnosis of tuberculosis disease. We evaluated the potentials of 74 host markers as biomarkers for the immunological diagnosis of tuberculosis and monitoring of treatment response. Fifty-five individuals that presented with signs and symptoms requiring investigation for tuberculosis disease were prospectively recruited prior to clinical diagnosis, at a health centre in Cape Town, South Africa. Patients were later classified as having tuberculosis disease or other respiratory diseases (ORD) using a combination of clinical, radiological and laboratory findings. Out of 74 host markers that were evaluated in plasma samples from study participants using a multiplex platform, 18 showed potential as tuberculosis diagnostic candidates with the most promising being NCAM, CRP, SAP, IP-10, ferritin, TPA, I-309, and MIG, which diagnosed tuberculosis disease individually, with area under the ROC curve ≥0.80. Six-marker biosignatures containing NCAM diagnosed tuberculosis disease with a sensitivity of 100% (95%CI, 86.3-100%) and specificity of 89.3% (95%CI, 67.6-97.3%) irrespective of HIV status, and 100% accuracy in the absence of HIV infection. Furthermore, the concentrations of 11 of these proteins changed with treatment, thereby indicating that they may be useful in monitoring of the response to tuberculosis treatment. Our findings have potential to be translated into a point-of-care screening test for tuberculosis, after future validation studies.


Assuntos
Biomarcadores/sangue , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/terapia , Tuberculose/terapia , Adulto , Feminino , Infecções por HIV/complicações , Humanos , Testes Imunológicos/métodos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Sistemas Automatizados de Assistência Junto ao Leito , Curva ROC , Reprodutibilidade dos Testes , África do Sul , Tuberculose/diagnóstico
16.
Neurobiol Aging ; 41: 93-106, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27103522

RESUMO

The neural cell adhesion molecule (NCAM) is involved in developmental processes and age-associated cognitive decline; however, little is known concerning the effects of NCAM in the visual system during aging. Using anatomical, electrophysiological, and behavioral assays, we analyzed age-related changes in visual function of NCAM deficient (-/-) and wild-type mice. Anatomical analyses indicated that aging NCAM -/- mice had fewer retinal ganglion cells, thinner retinas, and fewer photoreceptor cell layers than age-matched controls. Electroretinogram testing of retinal function in young adult NCAM -/- mice showed a 2-fold increase in a- and b-wave amplitude compared with wild-type mice, but the retinal activity dropped dramatically to control levels when the animals reached 10 months. In behavioral tasks, NCAM -/- mice had no visual pattern discrimination ability and showed premature loss of vision as they aged. Together, these findings demonstrate that NCAM plays significant roles in the adult visual system in establishing normal retinal anatomy, physiology and function, and in maintaining vision during aging.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Antígeno CD56/metabolismo , Transtornos da Visão/etiologia , Transtornos da Visão/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/patologia , Animais , Antígeno CD56/genética , Eletrorretinografia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras/patologia , Retina/citologia , Retina/metabolismo , Retina/patologia , Retina/fisiologia , Transtornos da Visão/patologia
17.
Oncotarget ; 7(12): 14199-206, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26883101

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The main features of AD are the pathological changes of density and distribution of intracellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. The processing of amyloid beta precursor protein (APP) to ß-amyloid peptide (Aß) is one of the critical events in the pathogenesis of AD. In this study, we evaluated the role of the interaction of neural cell adhesion molecule (NCAM) and APP in neurite outgrowth using two different experimental systems: PC12E2 cells and hippocampal neurons that were isolated from wild type, APP knock-in and APP knock-out mice. PC12E2 cells or hippocampal neurons were co-cultured with NCAM-negative or NCAM-positive fibroblasts L929 cells. We found that APP promoted neurite outgrowth of PC12E2 cells and hippocampal neurons in either the presence or absence of NCAM. Secreted APP can rescue the neurite outgrowth in hippocampal neurons from APP knock-out mice. The interaction of APP and NCAM had synergic effect in promoting neurite outgrowth in both PC12E2 cells and hippocampal neurons. Our results suggested that the interaction of APP with NCAM played an important role in AD development and therefore could be a potential therapeutic target for AD treatment.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Hipocampo/citologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Ratos
18.
Neurotoxicology ; 47: 47-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614230

RESUMO

Nickel, a known occupational/environmental hazard, may cross the placenta and reach appreciable concentrations in various fetal organs, including the brain. The aim of this study was to investigate whether nickel interferes with the process of neuronal differentiation. Following a 4 week treatment with retinoic acid (10µM), the human teratocarcinoma-derived NTera2/D1 cell line (NT2 cells) terminally differentiate into neurons which recapitulate many features of human fetal neurons. The continuous exposure of the differentiating NT2 cells to a not cytotoxic nickel concentration (10µM) increased the expression of specific neuronal differentiation markers such as neural cell adhesion molecule (NCAM) and microtubule associated protein 2 (MAP2). Furthermore, nickel exposure increased the expression of hypoxia-inducible-factor-1α (HIF-1α) and induced the activation of the AKT/PKB kinase pathway, as shown by the increase of P(Ser-9)-GSK-3ß, the inactive form of glycogen synthase kinase-3ß (GSK-3ß). Intriguingly, by the end of the fourth week the expression of tyrosine hydroxylase (TH) protein, a marker of dopaminergic neurons, was lower in nickel-treated than in control cultures. Thus, likely by partially mimicking hypoxic conditions, a not-cytotoxic nickel concentration appears to alter the process of neuronal differentiation and hinder the expression of the dopaminergic neuronal phenotype. Taken together, these results suggest that nickel, by altering normal brain development, may increase susceptibility to neuro-psychopathology later in life.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Níquel/toxicidade , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Exp Cell Res ; 324(2): 192-9, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24726913

RESUMO

The neural cell adhesion molecule NCAM is implicated in different neurodevelopmental processes and in synaptic plasticity in adult brain. The cytoplasmic domain of NCAM interacts with several cytoskeletal proteins and signaling molecules. To identify novel interaction partners of the cytosolic domain of NCAM a protein macroarray has been performed. We identified the ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1) as an interaction partner of NCAM140. Ufc1 is one of the enzymes involved in modification of proteins with the ubiquitin-like molecule ubiquitin-fold modifier-1 (Ufm1). We also observed a partial co-localization of NCAM140 with Ufc1 and Ufm1 and increased endocytosis of NCAM140 in the presence of Ufm1 suggesting a possible ufmylation of NCAM140 and a potential novel function of Ufm1 for cell surface proteins.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Células COS , Moléculas de Adesão Celular Neuronais/química , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , Endocitose/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Análise Serial de Proteínas , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/genética , Enzimas de Conjugação de Ubiquitina/química
20.
Mult Scler Relat Disord ; 2(1): 13-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25877450

RESUMO

Neural cell adhesion molecule (NCAM) has been studied extensively. But it is only in recent times that interest in this molecule has shifted to conditions such as Alzheimer's disease, Multiple Sclerosis and Schizophrenia, focusing on its role in neurodegeneration and abnormal neurodevelopment. NCAM is important in neurite outgrowth, long-term potentiation in the hippocampus and synaptic plasticity. Reduced as well as increased levels in NCAM have been linked to pathology in the brain suggesting that a shift in the equilibrium may be the key. Hence, increasing our understanding of the role of NCAM in health and disease should clear some of the ambiguity surrounding the molecule and even lead to newer potential therapeutic targets. This review consolidates our current understanding of NCAM, focusing on the consequences of dysregulation, its role in neurodegenerative and neurodevelopmental disorders, and the future of NCAM plus potential options for therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA