Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Nanomaterials (Basel) ; 14(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39404300

RESUMO

The traditional computer with von Neumann architecture has the characteristics of separate storage and computing units, which leads to sizeable time and energy consumption in the process of data transmission, which is also the famous "von Neumann storage wall" problem. Inspired by neural synapses, neuromorphic computing has emerged as a promising solution to address the von Neumann problem due to its excellent adaptive learning and parallel capabilities. Notably, in 2016, researchers integrated light into neuromorphic computing, which inspired the extensive exploration of optoelectronic and all-optical synaptic devices. These optical synaptic devices offer obvious advantages over traditional all-electric synaptic devices, including a wider bandwidth and lower latency. This review provides an overview of the research background on optoelectronic and all-optical devices, discusses their implementation principles in different scenarios, presents their application scenarios, and concludes with prospects for future developments.

2.
Adv Sci (Weinh) ; : e2408210, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39413365

RESUMO

Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for the development of next-generation computing and sensing systems. Axon-multisynapse systems enable the execution of sophisticated tasks, making them not only desirable but essential for future applications in this field. Anisotropic materials, which have different properties in different directions, are being used to create artificial synapses that can mimic the functions of biological axon-multisynapse systems. However, the restricted variety and unadjustable conductive ratio limit their applications. Here, it is shown that anisotropic artificial synapses can be achieved on isotropic materials with externally localized doping via electron beam irradiation (EBI) and purposefully induced trap sites. By employing the synapses along different directions, artificial neural networks (ANNs) are constructed to accomplish variable neuromorphic tasks with optimized performance. The localized doping method expands the axon-multisynapse device family, illustrating that this approach has tremendous potentials in next-generation computing and sensing systems.

3.
Front Neurosci ; 18: 1449181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39385848

RESUMO

Understanding cognitive processes in the brain demands sophisticated models capable of replicating neural dynamics at large scales. We present a physiologically inspired speech recognition architecture, compatible and scalable with deep learning frameworks, and demonstrate that end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network. Significant cross-frequency couplings, indicative of these oscillations, are measured within and across network layers during speech processing, whereas no such interactions are observed when handling background noise inputs. Furthermore, our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronizing neural activity to improve recognition performance. Overall, on top of developing our understanding of synchronization phenomena notably observed in the human auditory pathway, our architecture exhibits dynamic and efficient information processing, with relevance to neuromorphic technology.

4.
Molecules ; 29(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39407628

RESUMO

This study examines a new approach to hybrid neuromorphic devices by studying the impact of omeprazole-proteinoid complexes on Izhikevich neuron models. We investigate the influence of these metabolic structures on five specific patterns of neuronal firing: accommodation, chattering, triggered spiking, phasic spiking, and tonic spiking. By combining omeprazole, a proton pump inhibitor, with proteinoids, we create a unique substrate that interfaces with neuromorphic models. The Izhikevich neuron model is used because it is computationally efficient and can accurately simulate the various behaviours of cortical neurons. The results of our simulations show that omeprazole-proteinoid complexes have the ability to affect neuronal dynamics in different ways. This suggests that they could be used as adjustable components in bio-inspired computer systems. We noticed a notable alteration in the frequency of spikes, patterns of bursts, and rates of adaptation, especially in chattering and triggered spiking behaviours. The findings indicate that omeprazole-proteinoid complexes have the potential to serve as adaptable elements in neuromorphic systems, presenting novel opportunities for information processing and computation that have origins in neurobiological principles. This study makes a valuable contribution to the expanding field of biochemical neuromorphic devices and establishes a basis for the development of hybrid bio-synthetic computational systems.


Assuntos
Neurônios , Omeprazol , Omeprazol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Microesferas , Potenciais de Ação/efeitos dos fármacos , Modelos Neurológicos , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-39418188

RESUMO

Electrolyte-gated transistors (EGTs) have significant potential for neuromorphic computing because they can control the number of ions by mimicking neurotransmitters. However, fast depolarization of the electric double layer (EDL) makes it difficult to achieve long-term plasticity (LTP). Additionally, most research utilizing organic ferroelectric materials has been focused on basic biological functions, and the impact on nonvolatile memory properties is still lacking. Herein, we present a polyvinylidene fluoride (PVDF)-based ion-gel synaptic device using PVDF and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) to implement LTP through the introduction of ferroelectric materials. The PVDF-based polymer slows the escape rate of TFSI anions from the electrolyte/channel layer through residual polarization. The fabricated synaptic devices successfully demonstrate LTP by controlling ion adsorption under the influence of PVDF-based polymers. Furthermore, it implements synaptic functions including paired pulse facilitation (PPF), high-pass filtering, and neurotransmitter control. To validate the potential of neuromorphic computing, we successfully achieved high recognition rates for artificial/convolutional neural network (A/CNN) simulations via sequential adsorption and desorption under ferroelectric polarization with long-term potentiation/depression (LTP/D). This study provides a rational ion adsorption strategy utilizing the ferroelectric polarization caused by the introduction of a PVDF-based polymer in the dielectric layer.

7.
Adv Mater ; : e2409040, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39410727

RESUMO

Brain neurons exhibit far more sophisticated and powerful information-processing capabilities than the simple integrators commonly modeled in neuromorphic computing. A biological neuron can in fact efficiently perform Boolean algebra, including linear nonseparable operations. Traditional logic circuits require more than a dozen transistors combined as NOT, AND, and OR gates to implement XOR. Lacking biological competency, artificial neural networks require multilayered solutions to exercise XOR operation. Here, it is shown that a single-transistor neuron, harnessing the intrinsic ambipolarity of graphene and ionic filamentary dynamics, can enable in situ reconfigurable multiple Boolean operations from linear separable to linear nonseparable in an ultra-compact design. By leveraging the spatiotemporal integration of inputs, bio-realistic spiking-dependent Boolean computation is fully realized, rivaling the efficiency of a human brain. Furthermore, a soft-XOR-based neural network via algorithm-hardware co-design, showcasing substantial performance improvement, is demonstrated. These results demonstrate how the artificial neuron, in the ultra-compact form of a single transistor, may function as a powerful platform for Boolean operations. These findings are anticipated to be a starting point for implementing more sophisticated computations at the individual transistor neuron level, leading to super-scalable neural networks for resource-efficient brain-inspired information processing.

8.
Neural Netw ; 180: 106714, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39270349

RESUMO

We here analyse the question of developing artificial consciousness from an evolutionary perspective, taking the evolution of the human brain and its relation with consciousness as a reference model or as a benchmark. This kind of analysis reveals several structural and functional features of the human brain that appear to be key for reaching human-like complex conscious experience and that current research on Artificial Intelligence (AI) should take into account in its attempt to develop systems capable of human-like conscious processing. We argue that, even if AI is limited in its ability to emulate human consciousness for both intrinsic (i.e., structural and architectural) and extrinsic (i.e., related to the current stage of scientific and technological knowledge) reasons, taking inspiration from those characteristics of the brain that make human-like conscious processing possible and/or modulate it, is a potentially promising strategy towards developing conscious AI. Also, it cannot be theoretically excluded that AI research can develop partial or potentially alternative forms of consciousness that are qualitatively different from the human form, and that may be either more or less sophisticated depending on the perspectives. Therefore, we recommend neuroscience-inspired caution in talking about artificial consciousness: since the use of the same word "consciousness" for humans and AI becomes ambiguous and potentially misleading, we propose to clearly specify which level and/or type of consciousness AI research aims to develop, as well as what would be common versus differ in AI conscious processing compared to human conscious experience.

9.
Adv Sci (Weinh) ; : e2406242, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258724

RESUMO

Multimodal machine learning, as a prospective advancement in artificial intelligence, endeavors to emulate the brain's multimodal learning abilities with the objective to enhance interactions with humans. However, this approach requires simultaneous processing of diverse types of data, leading to increased model complexity, longer training times, and higher energy consumption. Multimodal neuromorphic devices have the capability to preprocess spatio-temporal information from various physical signals into unified electrical signals with high information density, thereby enabling more biologically plausible multimodal learning with low complexity and high energy-efficiency. Here, this work conducts a comparison between the expression of multimodal machine learning and multimodal neuromorphic computing, followed by an overview of the key characteristics associated with multimodal neuromorphic devices. The bio-plausible operational principles and the multimodal learning abilities of emerging devices are examined, which are classified into heterogeneous and homogeneous multimodal neuromorphic devices. Subsequently, this work provides a detailed description of the multimodal learning capabilities demonstrated by neuromorphic circuits and their respective applications. Finally, this work highlights the limitations and challenges of multimodal neuromorphic computing in order to hopefully provide insight into potential future research directions.

10.
ACS Appl Mater Interfaces ; 16(40): 54829-54836, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39331146

RESUMO

In the era of big data, the amount of global data is increasing exponentially, and the storage and processing of massive data put forward higher requirements for memory. To deal with this challenge, high-density memory and neuromorphic computing have been widely investigated. Here, a gradient-doped multilayer phase-change memory with two-level states, four-level states, and linear conductance evolution using different pulse operations is proposed. The mechanism of multilevel states is revealed through high-resolution transmission electron microscopy (HRTEM) and finite-element analysis (FEA), which show that the sequential phase change among different sublayers is realized due to the different physical properties of the sublayers with different doping concentrations. Taking advantage of the devices' linear conductance evolution characteristic, a handwritten digit (28 × 28 pixel) recognition task is implemented with a high learning accuracy of 93.46% by building a simulated artificial neural network made up of this gradient-doped multilayer phase-change memory. It is proved that this gradient-doped multilayer phase-change memory is capable of both binary multilevel digital storage and brain-inspired analog in-memory computing in the same device, enabling reconfigurable applications in the future.

11.
Front Neurosci ; 18: 1450640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308944

RESUMO

This paper addresses the challenges posed by frequent memory access during simulations of large-scale spiking neural networks involving synaptic plasticity. We focus on the memory accesses performed during a common synaptic plasticity rule since this can be a significant factor limiting the efficiency of the simulations. We propose neuron models that are represented by only three state variables, which are engineered to enforce the appropriate neuronal dynamics. Additionally, memory retrieval is executed solely by fetching postsynaptic variables, promoting a contiguous memory storage and leveraging the capabilities of burst mode operations to reduce the overhead associated with each access. Different plasticity rules could be implemented despite the adopted simplifications, each leading to a distinct synaptic weight distribution (i.e., unimodal and bimodal). Moreover, our method requires fewer average memory accesses compared to a naive approach. We argue that the strategy described can speed up memory transactions and reduce latencies while maintaining a small memory footprint.

12.
Adv Sci (Weinh) ; : e2407729, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324607

RESUMO

Ferroelectric (FE) materials are key to advancing electronic devices owing to their non-volatile properties, rapid state-switching abilities, and low-energy consumption. FE-based devices are used in logic circuits, memory-storage devices, sensors, and in-memory computing. However, the primary challenge in advancing the practical applications of FE-based memory is its reliability. To address this problem, a novel polarization pruning (PP) method is proposed. The PP is designed to eliminate weakly polarized domains by applying an opposite-sign pulse immediately after a program or erase operation. Significant improvements in the reliability of ferroelectric devices are achieved by reducing the depolarization caused by weakly polarized domains and mitigating the fluctuations in the ferroelectric dipole. These enhancements include a 25% improvement in retention, a 50% reduction in read noise, a 45% decrease in threshold voltage variation, and a 72% improvement in linearity. The proposed PP method significantly improves the memory storage efficiency and performance of neuromorphic systems.

13.
Adv Sci (Weinh) ; : e2408648, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250339

RESUMO

According to the United Nations, around 53 million metric tons of electronic waste is produced every year, worldwide, the big majority of which goes unprocessed. With the rapid advances in AI technologies and adoption of smart gadgets, the demand for powerful logic and memory chips is expected to boom. Therefore, the development of green electronics is crucial to minimizing the impact of the alarmingly increasing e-waste. Here, it is shown the application of a green synthesized, chemically stable, carbonyl-decorated 2D organic, and biocompatible polymer as an active layer in a memristor device, sandwiched between potentially fully recyclable electrodes. The 2D polymer's ultramicro channels, decorated with C═O and O─H groups, efficiently promote the formation of copper nanofilaments. As a result, the device shows excellent bipolar resistive switching behavior with the potential to mimic synaptic plasticity. A large resistive switching window (103), low SET/RESET voltage of ≈0.5/-1.5 V), excellent device-to-device stability and synaptic features are demonstrated. Leveraging the device's synaptic characteristics, its applications in image denoising and edge detection is examined. The results show a reduction in power consumption by a factor of 103 compared to a traditional Tesla P40 graphics processing unit, indicating great promise for future sustainable AI-based applications.

14.
Nano Lett ; 24(36): 11187-11193, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39141575

RESUMO

Antiferromagnets (AFMs) are ideal materials to boost neuromorphic computing toward the ultrahigh speed and ultracompact integration regime. However, developing a suitable AFM neuromorphic memory remains an aspirational but challenging goal. In this work, we construct such a memory based on the CoO/Pt heterostructure, in which the collinear insulating AFM CoO shows a strong perpendicular anisotropy facilitating its electrical readout and writing. Utilizing the unique nonlinear response and bipolar fading memory properties of the device, we demonstrate a multidimensional reservoir computing beyond the traditional binary paradigm. These results are expected to pave the way toward next-generation fast and massive neuromorphic computing.

15.
Nano Lett ; 24(36): 11170-11178, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39148056

RESUMO

Functionally diverse devices with artificial neuron and synapse properties are critical for neuromorphic systems. We present a two-terminal artificial leaky-integrate-fire (LIF) neuron based on 6 nm Hf0.1Zr0.9O2 (HZO) antiferroelectric (AFE) thin films and develop a synaptic device through work function (WF) engineering. LIF neuron characteristics, including integration, firing, and leakage, are achieved in W/HZO/W devices due to the accumulated polarization and spontaneous depolarization of AFE HZO films. By engineering the top electrode with asymmetric WFs, we found that Au/Ti/HZO/W devices exhibit synaptic weight plasticity, such as paired-pulse facilitation and long-term potentiation/depression, achieving >90% accuracy in digit recognition within constructed artificial neural network systems. These findings suggest that AFE HZO capacitor-based neurons and WF-engineered artificial synapses hold promise for constructing efficient spiking neuron networks and artificial neural networks, thereby advancing neuromorphic computing applications based on emerging AFE HZO devices.

16.
Nano Lett ; 24(35): 10865-10873, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39142648

RESUMO

Threshold switching (TS) memristors are promising candidates for artificial neurons in neuromorphic systems. However, they often lack biological plausibility, typically functioning solely in an excitation mode. The absence of an inhibitory mode limits neurons' ability to synergistically process both excitatory and inhibitory synaptic signals. To address this limitation, we propose a novel memristive neuron capable of operating in both excitation and inhibition modes. The memristor's threshold voltage can be reversibly tuned using voltages of different polarities because of its bipolar TS behavior, enabling the device to function as an electronically reconfigurable bi-mode neuron. A variety of neuronal activities such as all-or-nothing behavior and tunable firing probability are mimicked under both excitatory and inhibitory stimuli. Furthermore, we develop a self-adaptive neuromorphic vision sensor based on bi-mode neurons, demonstrating effective object recognition in varied lighting conditions. Thus, our bi-mode neuron offers a versatile platform for constructing neuromorphic systems with rich functionality.


Assuntos
Neurônios , Neurônios/fisiologia , Redes Neurais de Computação , Eletrônica
17.
Adv Mater ; 36(38): e2403937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39087845

RESUMO

Hydrogels find widespread applications in biomedicine because of their outstanding biocompatibility, biodegradability, and tunable material properties. Hydrogels can be chemically functionalized or reinforced to respond to physical or chemical stimulation, which opens up new possibilities in the emerging field of intelligent bioelectronics. Here, the state-of-the-art in functional hydrogel-based transistors and memristors is reviewed as potential artificial synapses. Within these systems, hydrogels can serve as semisolid dielectric electrolytes in transistors and as switching layers in memristors. These synaptic devices with volatile and non-volatile resistive switching show good adaptability to external stimuli for short-term and long-term synaptic memory effects, some of which are integrated into synaptic arrays as artificial neurons; although, there are discrepancies in switching performance and efficacy. By comparing different hydrogels and their respective properties, an outlook is provided on a new range of biocompatible, environment-friendly, and sustainable neuromorphic hardware. How potential energy-efficient information storage and processing can be achieved using artificial neural networks with brain-inspired architecture for neuromorphic computing is described. The development of hydrogel-based artificial synapses can significantly impact the fields of neuromorphic bionics, biometrics, and biosensing.


Assuntos
Eletrônica , Hidrogéis , Redes Neurais de Computação , Sinapses , Hidrogéis/química , Sinapses/fisiologia , Transistores Eletrônicos , Neurônios/fisiologia , Materiais Biocompatíveis/química , Animais , Humanos
18.
Front Robot AI ; 11: 1401677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131197

RESUMO

Recent trends have shown that autonomous agents, such as Autonomous Ground Vehicles (AGVs), Unmanned Aerial Vehicles (UAVs), and mobile robots, effectively improve human productivity in solving diverse tasks. However, since these agents are typically powered by portable batteries, they require extremely low power/energy consumption to operate in a long lifespan. To solve this challenge, neuromorphic computing has emerged as a promising solution, where bio-inspired Spiking Neural Networks (SNNs) use spikes from event-based cameras or data conversion pre-processing to perform sparse computations efficiently. However, the studies of SNN deployments for autonomous agents are still at an early stage. Hence, the optimization stages for enabling efficient embodied SNN deployments for autonomous agents have not been defined systematically. Toward this, we propose a novel framework called SNN4Agents that consists of a set of optimization techniques for designing energy-efficient embodied SNNs targeting autonomous agent applications. Our SNN4Agents employs weight quantization, timestep reduction, and attention window reduction to jointly improve the energy efficiency, reduce the memory footprint, optimize the processing latency, while maintaining high accuracy. In the evaluation, we investigate use cases of event-based car recognition, and explore the trade-offs among accuracy, latency, memory, and energy consumption. The experimental results show that our proposed framework can maintain high accuracy (i.e., 84.12% accuracy) with 68.75% memory saving, 3.58x speed-up, and 4.03x energy efficiency improvement as compared to the state-of-the-art work for the NCARS dataset. In this manner, our SNN4Agents framework paves the way toward enabling energy-efficient embodied SNN deployments for autonomous agents.

19.
Nano Lett ; 24(32): 9937-9945, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39092599

RESUMO

The processing of multicolor noisy images in visual neuromorphic devices requires selective absorption at specific wavelengths; however, it is difficult to achieve this because the spectral absorption range of the device is affected by the type of material. Surprisingly, the absorption range of perovskite materials can be adjusted by doping. Herein, a CdCl2 co-doped CsPbBr3 nanocrystal-based photosensitive synaptic transistor (PST) is reported. By decreasing the doping concentration, the response of the PST to short-wavelength light is gradually enhanced, and even weak light of 40 µW·cm-2 can be detected. Benefiting from the excellent color selectivity of the PST device, the device array is applied to feature extraction of target blue items and removal of red and green noise, which results in the recognition accuracy of 95% for the noisy MNIST data set. This work provides new ideas for the application of novel transistors integrating sensors and storage computing.

20.
Angew Chem Int Ed Engl ; : e202413311, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39104289

RESUMO

Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high-quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room-temperature single-phase method was used to synthesize Ta-Cu3 COF, which contains two redox-active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid-assisted exfoliation and subsequently spin-coated to fabricate a high-quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox-active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non-volatile conductive states in the Al/Ta-Cu3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13% after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56% improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA