Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982883

RESUMO

BACKGROUND: Sensing dietary components in the gut is important to ensure an appropriate hormonal response and metabolic regulation after food intake. The fall webworm, Hyphantria cunea, is a major invasive pest in China and has led to significant economic losses and ecosystem disruption. The larvae's broad host range and voracious appetite for leaves make H. cunea a primary cause of serious damage to both forests and crops. To date, however, the gustatory receptors (Grs) of H. cunea and their regulatory function remain largely unknown. RESULTS: We identified the fall webworm gustatory receptor HcGr76 as a fructose and chlorogenic acid receptor using Ca2+ imaging and determination of intracellular Ca2+ concentration by a microplate reader. Moreover, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that HcGr76 is highly expressed in the anterior and middle midgut. Knockdown of HcGr76 caused a significant reduction in the expression of neuropeptide F 1 (NPF1) and CCHamide-2, and led to a decrease in carbohydrate and lipid levels in the hemolymph. CONCLUSION: Our studies provide circumstantial evidence that HcGr76 expressed in the midgut is involved in sensing dietary components, and regulates the expression of relevant peptide hormones to alter metabolism in H. cunea larvae, thus providing a promising molecular target for the development of new insect-specific control products. © 2024 Society of Chemical Industry.

2.
Fish Shellfish Immunol ; 151: 109735, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945414

RESUMO

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.


Assuntos
Proteínas de Artrópodes , Regulação da Expressão Gênica , Neuropeptídeos , Caracteres Sexuais , Animais , Masculino , Feminino , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica/imunologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Astacoidea/genética , Astacoidea/imunologia , Intestinos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Imunidade Inata/genética , Filogenia , Perfilação da Expressão Gênica , Sequência de Aminoácidos , Alinhamento de Sequência
3.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826473

RESUMO

The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters in the same neuron is a fundamental aspect of almost all neurons across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we developed a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we explore the differences of in vivo dynamics and molecular regulation between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, the release of sNPF and ACh shows different spatiotemporal dynamics. Notably, we found that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this new GRAB sensor provides a powerful tool for studying neuropeptide release and providing new insights into the distinct release dynamics and molecular regulation between neuropeptides and small molecule neurotransmitters.

4.
J Zhejiang Univ Sci B ; 25(5): 389-409, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725339

RESUMO

The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.


Assuntos
Insetos , Neuropeptídeos , Transdução de Sinais , Animais , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Insetos/fisiologia , Insetos/metabolismo , Ritmo Circadiano/fisiologia , Comportamento Alimentar , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Metabolismo Energético
5.
Cell Tissue Res ; 397(1): 13-36, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38592496

RESUMO

Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.


Assuntos
Neuropeptídeos , Ovário , Palaemonidae , Animais , Feminino , Palaemonidae/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Ovário/metabolismo , Sistema Digestório/metabolismo , Água Doce , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Trato Gastrointestinal/metabolismo
6.
J Agric Food Chem ; 72(18): 10304-10313, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657164

RESUMO

Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.


Assuntos
Proteínas de Insetos , Larva , Neuropeptídeos , Spodoptera , Animais , Spodoptera/fisiologia , Spodoptera/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/química , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Flavonas/metabolismo , Flavonas/química , Comportamento Alimentar , Sequência de Aminoácidos
7.
Pest Manag Sci ; 80(3): 978-987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37822037

RESUMO

BACKGROUND: Omnivores, including humans, have an inborn tendency to avoid risky or non-nutritious foods. However, relatively little is known about how animals perceive and discriminate nutritious foods from risky substances. In this study, we explored the mechanism of feeding selection in Ostrinia furnacalis larvae, one of the most destructive pests to the maize crop. RESULTS: We identified a gustatory receptor, Gr43a, for feeding regulation in larvae of Ostrinia furnacalis, which highly expresses in the mouthparts of the first- (the period of just hatching out from eggs) and fifth-instar larvae (the period of gluttony). The Gr43a regulates foraging plasticity by discriminating sorbitol, a nonsweet nutritious substance, and sucralose, a sweet non-nutritious substance through the labra of mouthparts, while it differentiates fructose/sucrose and sucralose via the sensilla styloconica of mouthparts. Specially, Gr43a responds to fructose and sucrose via the medial and lateral sensilla styloconica in O. furnacalis, respectively. Furthermore, Gr43a is negatively regulated by the neuropeptide F system, a homologous mammalian neuropeptide Y system. CONCLUSION: This study reveals a smart feeding strategy for animals to meet both nutritional needs and sweet gratification, and offers an insight into complex feeding selections dependent on food resources in the surrounding environment. © 2023 Society of Chemical Industry.


Assuntos
Proteínas de Drosophila , Mariposas , Animais , Humanos , Larva/fisiologia , Mariposas/fisiologia , Frutose , Sacarose , Mamíferos
8.
Insect Sci ; 31(2): 417-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37464946

RESUMO

Mythimna separata is a notorious phytophagous pest which poses serious threats to cereal crops owing to the gluttony of the larvae. Because short neuropeptide F (sNPF) and its receptor sNPFR are involved in a diversity of physiological functions, especially in functions related to feeding in insects, it is a molecular target for pest control. Herein, an sNPF and 2 sNPFRs were identified and cloned from M. separata. Bioinformatics analysis revealed that the sNPF and its receptors had a highly conserved RLRFamide C-terminus and 7 transmembrane domains, respectively. The sNPF and its receptor genes were distributed across larval periods and tissues, but 2 receptors had distinct expression patterns. The starvation-induced assay elucidated that sNPF and sNPFR expression levels were downregulated under food deprivation and recovered with subsequent re-feeding. RNA interference knockdown of sNPF, sNPFR1, and sNPFR2 by injection of double-stranded RNA into larvae not only suppressed food consumption and increased body size and weight, but also led to decrease of glycogen and total lipid contents, and increase of trehalose compared with double-stranded green fluorescent protein injection. Furthermore, molecular docking was performed on the interaction mode between sNPFR protein and its ligand sNPF based on the 3-dimensional models constructed by AlphaFold; the results indicated that both receptors were presumably activated by the mature peptide sNPF-2. These results revealed that sNPF signaling played a considerably vital role in the feeding regulation of M. separata and represents a potential control target for this pest.


Assuntos
Neuropeptídeos , Receptores de Neuropeptídeos , Animais , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Larva/genética , Larva/metabolismo , Simulação de Acoplamento Molecular , Neuropeptídeos/genética , Neuropeptídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(51): e2307632120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079543

RESUMO

Chronic stress may induce learning and memory deficits that are associated with a depression-like state in Drosophila melanogaster. The molecular and neural mechanisms underlying the etiology of chronic stress-induced learning deficit (CSLD) remain elusive. Here, we show that the autophagy-lysosomal pathway, a conserved cellular signaling mechanism, is associated with chronic stress in Drosophila, as indicated by time-series transcriptome profiling. Our findings demonstrate that chronic stress induces the disruption of autophagic flux, and chronic disruption of autophagic flux could lead to a learning deficit. Remarkably, preventing the disruption of autophagic flux by up-regulating the basal autophagy level is sufficient to protect against CSLD. Consistent with the essential role of the dopaminergic system in modulating susceptibility to CSLD, dopamine neuronal activity is also indispensable for chronic stress to induce the disruption of autophagic flux. By screening knockout mutants, we found that neuropeptide F, the Drosophila homolog of neuropeptide Y, is necessary for normal autophagic flux and promotes resilience to CSLD. Moreover, neuropeptide F signaling during chronic stress treatment promotes resilience to CSLD by preventing the disruption of autophagic flux. Importantly, neuropeptide F receptor activity in dopamine neurons also promotes resilience to CSLD. Together, our data elucidate a mechanism by which stress-induced excessive dopaminergic activity precipitates the disruption of autophagic flux, and chronic disruption of autophagic flux leads to CSLD, while inhibitory neuropeptide F signaling to dopamine neurons promotes resilience to CSLD by preventing the disruption of autophagic flux.


Assuntos
Drosophila , Neuropeptídeo Y , Animais , Drosophila melanogaster/genética , Sistema Nervoso , Autofagia/genética
10.
Pestic Biochem Physiol ; 197: 105653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072528

RESUMO

Allatostatin (AS) or Allatotropin (AT) is a class of insect short neuropeptide F (sNPF) that affects insect growth and development by inhibiting or promote the synthesis of juvenile hormone (JH) in different insects. III-2 is a novel sNPF analog derived from a group of nitroaromatic groups connected by different amino acids. In this study, we found that III-2 showed high insecticidal activity against S. frugiperda larvae with a LC50 of 18.7 mg L-1. As demonstrated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), III-2 particularly facilitated JH III and hindered 20E synthesis in S. frugiperda. The results of RNA-Seq and quantitative real-time polymerase chain reaction (qPCR) showed that III-2 treatment promoted the expression of key genes such as SfCYP15C1 in JH synthesis pathway and inhibited the expression of SfCYP314A1 and other genes in the 20E synthetic pathway. Significant differences were also observed in the expression of the genes related to cuticle formation. We report for the first time that sNPF compounds specifically interfere with the synthesis and secretion of a certain JH in insects, thus affecting the ecdysis and growth of insects, and leading to death. This study may provide a new plant conservation concept for us to seek the targeted control of certain insects based on specific interference with different JH.


Assuntos
Hormônios Juvenis , Espectrometria de Massas em Tandem , Animais , Spodoptera/genética , Spodoptera/metabolismo , Cromatografia Líquida , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/metabolismo , Insetos
11.
Pestic Biochem Physiol ; 195: 105565, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666620

RESUMO

Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have been applied in sprayable formulations and expressed in transgenic crops for the control of pests in the field. When exposed to Bt proteins insect larvae display feeding cessation, yet the mechanism for this phenomenon remains unknown. In this study, we investigated the feeding behavior and underlying mechanisms of cotton bollworm (Helicoverpa armigera) larvae after exposure to the Cry1Ac protein from Bt. Three H. armigera strains were studied: the susceptible SCD strain, the C2/3-KO strain with HaABCC2 and HaABCC3 knocked out and high-level resistance to Cry1Ac (>15,000-fold), and the SCD-KI strain with a T92C point mutation in tetraspanin (HaTSPAN1) and medium-level resistance to Cry1Ac (125-fold). When determining the percentage of insects that continued feeding after various exposure times to Cry1Ac, we observed quick cessation of feeding in larvae from the susceptible SCD strain, whereas larvae from the C2/3-KO strain did not display feeding cessation. In contrast, larvae from the SCD-KI strain rapidly recovered from the initial feeding cessation. Histopathological analyses and qRT-PCR in midguts of SCD larvae after Cry1Ac exposure detected serious epithelial damage and significantly reduced expression of the neuropeptide F gene (NPF) and its potential receptor gene NPFR, which are reported to promote insect feeding. Neither epithelial damage nor altered NPF and NPFR expression appeared in midguts of C2/3-KO larvae after Cry1Ac treatment. The same treatment in SCD-KI larvae resulted in milder epithelial damage and subsequent repair, and a decrease followed by an initial increase in NPF and NPFR expression. These results demonstrate that the feeding cessation response to Cry1Ac in cotton bollworm larvae is closely associated with midgut epithelial damage and downregulation of NPF and NPFR expression. This information provides clues to the mechanism of feeding cessation in response to Bt intoxication and contributes to the mode of action of the Cry1Ac toxin in target pests.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Larva , Bacillus thuringiensis/genética , Inseticidas/toxicidade , Animais Geneticamente Modificados , Gossypium , Mariposas/genética
12.
Pest Manag Sci ; 79(10): 3593-3601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37183359

RESUMO

BACKGROUND: Feeding is the basis of animal survival and reproduction. In insects, the neuropeptide F (NPF), a homologous polypeptide of NPY in vertebrates, plays an important role in regulation of feeding behavior. However, relatively little has been known about the molecular mechanism of feeding. RESULTS: In this study, we show that the cholinergic pathway is very important in signaling transmission of NPF feeding regulation in Ostrinia furnacalis larvae, in which the choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (vAChT) in presynaptic membrane and the nicotinic acetylcholine receptor (nAChR) in postsynaptic membrane are positively regulated by NPF, while the ace1 and ace2 encoding the acetylcholinesterase (AChE) are negatively regulated by NPF, leading to a balance of acetylcholine (ACh)-the excitatory transmitter. More, the cholinergic pathway further transmits signaling to the downstream pathways of the phosphoInositide-3 kinase (PI3K) and the cAMP responsive element binding protein (CREB), respectively. CONCLUSION: The cholinergic transmission, positively regulated by NPF, is involved in feeding of O. furnacalis larvae via downstream PI3K and the CREB pathways, respectively. The deexcitation of cell cholinergic pathway or inhibition of PI3K and CREB lead to decreases of larval feeding amount. © 2023 Society of Chemical Industry.

13.
Pest Manag Sci ; 79(8): 2959-2968, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36966467

RESUMO

BACKGROUND: The tobacco-rice rotation cropping (TRRC) is an ecologically friendly system that can both alleviate soil nicotine pollution and decrease the brown planthopper (BPH, Nilaparvata lugens Stål) fitness on rice. However, few studies on this green and effective rotational cropping system have been reported. In particular, the underlying mechanisms of TRRC on the significant reduction of field pest population at the molecular level is still unknown. RESULTS: Field investigation showed that BPH population decreased significantly in TRRC than in rice-rice successive cropping (RRSC) field. In addition, the short neuropeptide F (NlsNPF) and its receptor NlA7 of BPH had half-times lower levels in the TRRC field. Behavioral bioassay indicated a 1.93-fold increase in the number of salivary flanges of the dsNlsNPF group, while BPH fitness parameters, such as honeydew, weight gain, and mortality decreased significantly. Dopamine (DA) content in BPH decreased by ~11.1% under the influence of nicotine, and its presence increased the expression levels of NlsNPF and NlA7. Exogenous DA application eliminated the inhibitory effects of nicotine on BPH feeding and restored the fitness levels of its parameters. Independent application of either a mixture of dsNlsNPF with a nanocarrier or nicotine to the normal rice field revealed that the latter could produce better effects in combination with dsRNA. CONCLUSION: These findings confirmed that DA regulated NlsNPF to inhibit the BPH feeding behavior in TRRC. The results not only provided novel findings on the mechanism of pest-host interactions, but also presented new method for integrated pest management. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Animais , Dopamina/metabolismo , Dopamina/farmacologia , Comportamento Alimentar , Hemípteros/fisiologia , Nicotina/farmacologia , Oryza/genética , Nicotiana/genética
14.
Insects ; 13(3)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323580

RESUMO

Insect short neuropeptide F (sNPF), an ortholog of prolactin-releasing peptide of invertebrates, regulates diverse biological processes, including feeding, olfaction, locomotion, and sleep homeostasis in insects. However, its function is still unclear in an important model insect and agricultural pest, the pea aphid (Acyrthosiphon pisum). Here, we investigated short neuropeptide F (ApsNPF) and its receptor (ApsNPFR) in A. pisum. The sNPF gene contains three exons and two long introns. In addition, the genome contains a single sNPF receptor with seven transmembrane domains. Stage- and tissue-specific transcript profiling by qRT-PCR revealed that ApsNPF and ApsNPFR were mainly expressed in the central nervous system. The receptor was also detected in antennae, midgut, and integument. The highest expression levels were found in first instar nymphs compared to other developmental stages. Besides, the starvation-induced pattern indicated that the sNPF network depends on the nutritional state of the insect. An electrical penetration graph showed that probing time and phloem duration of A. pisum on broad bean plants decreased in response to dssNPF and dssNPFR in RNAi assays. sNPF silencing reduced the number of nymphs per female but not aphid survival. We believe that our results advance in-depth knowledge of the sNPF/sNPFR signaling cascade and its place in regulating feeding behavior in insects. In turn, it may contribute to the potential design of new strategies to control aphids, with a focus on the sNPF system.

15.
Biol Lett ; 18(2): 20210520, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104428

RESUMO

Motivation can critically influence learning and memory. Multiple neural mechanisms regulate motivational states, among which signalling via specific neuropeptides, such as NPY in vertebrates and NPF and its short variant sNPF in invertebrates, plays an essential role. The honey bee (Apis mellifera) is a privileged model for the study of appetitive learning and memory. Bees learn and memorize sensory cues associated with nectar reward while foraging, and their learning is affected by their feeding state. However, the neural underpinnings of their motivational states remain poorly known. Here we focused on the short neuropeptide F (sNPF) and studied if it modulates the acquisition and formation of colour memories. Artificially increasing sNPF levels in partially fed foragers with a reduced motivation to learn colours resulted in significant colour learning and memory above the levels exhibited by starved foragers. Our results thus identify sNPF as a critical component of motivational processes involved in foraging and in the cognitive processes associated with this activity in honey bees.


Assuntos
Memória , Neuropeptídeos , Animais , Abelhas , Aprendizagem , Néctar de Plantas
16.
J Comp Neurol ; 530(4): 729-755, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34545567

RESUMO

Neuropeptide F (NPF) plays critical roles in controlling the feeding and reproduction of prawns. In the present study, we investigated changes in the expression levels of Macrobrachium rosenbergii neuropeptide F (MrNPF), and its neuroanatomical distribution in eyestalk (ES), brain (BR), subesophageal ganglion (SEG), thoracic ganglia (TG), and abdominal ganglia (AG), during the ovarian cycle of female prawn. By qRT-PCR, the amount of MrNPF transcripts exhibited a gradual increase in the ES, BR, and combined SEG and TG from stages I and II, to reach a maximum level at stage III, and slightly declined at stage IV, respectively. The highest to lowest expression levels were detected in combined SEG and TG, BR, ES, and AG, respectively. MrNPF immunolabeling was observed in several neuronal clusters, associated fibers, and neuropils of these central nervous system (CNS) tissues. MrNPF-ir was more intense in neurons and neuropils of SEG and TG than those found in other parts of the CNS. The number of MrNPF-ir neurons and intensity of MrNPF-ir were higher in the ES, BR, SEG, and TG at the late stages than those at the early stages of the ovarian cycle, while those in AG exhibited insignificant change. Taken together, there is a correlation between changes in the neuroanatomical distribution of MrNPF and stages of the ovarian cycle, implying that MrNPF may be an important neuropeptide that integrates sensory stimuli, including photo-, chemo-, and gustatory receptions, to control feeding and reproduction, particularly ovarian development, of this female prawn, M. rosenbergii.


Assuntos
Neuropeptídeos , Palaemonidae , Animais , Sistema Nervoso Central/metabolismo , Feminino , Água Doce , Ciclo Menstrual , Neuropeptídeos/metabolismo , Palaemonidae/metabolismo
17.
Front Physiol ; 12: 785435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950056

RESUMO

In many insect species, mating stimuli can lead to changes in various behavioral and physiological responses, including feeding, mating refusal, egg-laying behavior, energy demand, and organ remodeling, which are collectively known as the post-mating response. Recently, an increase in germline stem cells (GSCs) has been identified as a new post-mating response in both males and females of the fruit fly, Drosophila melanogaster. We have extensively studied mating-induced increase in female GSCs of D. melanogaster at the molecular, cellular, and systemic levels. After mating, the male seminal fluid peptide [e.g. sex peptide (SP)] is transferred to the female uterus. This is followed by binding to the sex peptide receptor (SPR), which evokes post-mating responses, including increase in number of female GSCs. Downstream of SP-SPR signaling, the following three hormones and neurotransmitters have been found to act on female GSC niche cells to regulate mating-induced increase in female GSCs: (1) neuropeptide F, a peptide hormone produced in enteroendocrine cells; (2) octopamine, a monoaminergic neurotransmitter synthesized in ovary-projecting neurons; and (3) ecdysone, a steroid hormone produced in ovarian follicular cells. These humoral factors are secreted from each organ and are received by ovarian somatic cells and regulate the strength of niche signaling in female GSCs. This review provides an overview of the latest findings on the inter-organ relationship to regulate mating-induced female GSC increase in D. melanogaster as a model. We also discuss the remaining issues that should be addressed in the future.

18.
Arch Insect Biochem Physiol ; 108(3): e21845, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34605064

RESUMO

With the wide cultivation of transgenic plants throughout the world and the rising risk of resistance to Bacillus thuringiensis crystal (Cry) toxins, it is essential to design an adaptive resistance management strategy for continued use. Neuropeptide F (NPF) of insects has proven to be valuable for the production of novel-type transgenic plants via its important role in the control of feeding behavior. In this study, the gene encoding NPF was cloned from the diamondback moth, Plutella xylostella, an important agricultural pest. Real-time quantitative reverse transcription-polymerase chain reaction and in situ hybridization showed a relatively high expression of P. xylostella-npf (P. x-npf) in endocrine cells of the midgut of fourth instar larvae, and it was found to participate in P. xylostella feeding behavior and Cry1Ac-induced feeding inhibition. Prokaryotic expression and purification provided structure unfolded P. x-npf from inclusion bodies for diet surface overlay bioassays and the results demonstrated a significant synergistic effect of P. x-npf on Cry1Ac toxicity by increasing intake of noxious food which contains Cry toxins, especially quick death at an early stage of feeding. Our findings provided a potential new way to efficiently control pests by increasing intake of lower dose Cry toxins and a novel hint for the complex Cry toxin mechanism.


Assuntos
Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Mariposas , Neuropeptídeos , Animais , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Comportamento Alimentar/fisiologia , Expressão Gênica , Genes de Insetos , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Mariposas/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Controle de Pragas/métodos
19.
Insects ; 12(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34564284

RESUMO

The short neuropeptide F (sNPF) is an essential signaling molecule that is evolutionarily conserved and involved in a broad range of physiological functions in the invertebrates, by interacting with sNPF receptors, which belong to G protein-coupled receptors (GPCR). However, the function of sNPF in regulating the food intake of Dendroctonus armandi has been unclear. In this study, we cloned and characterized cDNAs encoding sNPF and sNPF receptor in the D. armandi and made bioinformatics predictions on the deduced amino acid sequences. They had a high degree of similarity to that of Dendroctonus ponderosa. Quantitative real-time reverse transcription PCR (qRT-PCR) revealed that the transcript levels of both sNPF and sNPFR varied across developmental stages and body parts. In addition, the sNPF and sNPFR expression levels were upregulated in starved beetles, and the expression levels recovered after re-feeding. Furthermore, RNAi knockdown by the injection of sNPF and sNPFR dsRNA into beetles significantly increased mortality and reduced their food intake and body weight, and also caused decrease of glycogen and free fatty acid and increase of trehalose. These results indicate that sNPF signaling pathway plays an important role in the regulation of food intake and provides a potential molecular target for the eco-friendly control strategies of this pest.

20.
Front Physiol ; 12: 662651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220532

RESUMO

Neuropeptide F (NPF) is an important signaling molecule that acts as a neuromodulator to regulate a diversity of physiological and behavioral processes from vertebrates to invertebrates by interaction with NPF receptors, which are G protein-coupled receptors (GPCR). However, nothing is known about NPF in Chinese white pine beetle, Dendroctonus armandi, a destructive pest of natural and coniferous forests in the middle Qinling Mountains of China. We have cloned and characterized cDNAs encoding one NPF precursor and two NPF receptors in D. armandi and made bioinformatics predictions according to the deduced amino acid sequences. They were highly similar to that of Dendroctonus ponderosa. The transcription levels of these genes were different between larvae and adults of sexes, and there were significant differences among the different developmental stages and tissues and between beetles under starvation and following re-feeding states. Additionally, downregulation of NPF and NPFR by injecting dsRNA into beetles reduced their food intake, caused increases of mortality and decreases of body weight, and also resulted in a decrease of glycogen and free fatty acid and an increase of trehalose. These results indicate that the NPF signaling pathway plays a significant positive role in the regulation of food intake and provides a potential target for the sustainable management of this pest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA