Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1341752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524125

RESUMO

Purpose: Sepsis is a clinical syndrome defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis is a highly heterogeneous syndrome with distinct phenotypes that impact immune function and response to infection. To develop targeted therapeutics, immunophenotyping is needed to identify distinct functional phenotypes of immune cells. In this study, we utilized our Organ-on-Chip assay to categorize sepsis patients into distinct phenotypes using patient data, neutrophil functional analysis, and proteomics. Methods: Following informed consent, neutrophils and plasma were isolated from sepsis patients in the Temple University Hospital ICU (n=45) and healthy control donors (n=7). Human lung microvascular endothelial cells (HLMVEC) were cultured in the Organ-on-Chip and treated with buffer or cytomix ((TNF/IL-1ß/IFNγ). Neutrophil adhesion and migration across HLMVEC in the Organ-on-Chip were used to categorize functional neutrophil phenotypes. Quantitative label-free global proteomics was performed on neutrophils to identify differentially expressed proteins. Plasma levels of sepsis biomarkers and neutrophil extracellular traps (NETs) were determined by ELISA. Results: We identified three functional phenotypes in critically ill ICU sepsis patients based on ex vivo neutrophil adhesion and migration patterns. The phenotypes were classified as: Hyperimmune characterized by enhanced neutrophil adhesion and migration, Hypoimmune that was unresponsive to stimulation, and Hybrid with increased adhesion but blunted migration. These functional phenotypes were associated with distinct proteomic signatures and differentiated sepsis patients by important clinical parameters related to disease severity. The Hyperimmune group demonstrated higher oxygen requirements, increased mechanical ventilation, and longer ICU length of stay compared to the Hypoimmune and Hybrid groups. Patients with the Hyperimmune neutrophil phenotype had significantly increased circulating neutrophils and elevated plasma levels NETs. Conclusion: Neutrophils and NETs play a critical role in vascular barrier dysfunction in sepsis and elevated NETs may be a key biomarker identifying the Hyperimmune group. Our results establish significant associations between specific neutrophil functional phenotypes and disease severity and identify important functional parameters in sepsis pathophysiology that may provide a new approach to classify sepsis patients for specific therapeutic interventions.


Assuntos
Neutrófilos , Sepse , Humanos , Neutrófilos/metabolismo , Células Endoteliais , Proteômica , Biomarcadores/metabolismo , Fenótipo , Gravidade do Paciente
2.
Am J Physiol Cell Physiol ; 326(3): C661-C683, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189129

RESUMO

Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.


Assuntos
Inflamação , Neutrófilos , Humanos , Macrófagos , Homeostase
3.
Cells ; 12(22)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998356

RESUMO

Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Imunidade Inata
4.
MedComm (2020) ; 4(4): e325, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492784

RESUMO

Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.

5.
Cell Mol Gastroenterol Hepatol ; 16(5): 657-684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37406734

RESUMO

BACKGROUND & AIMS: Wilson's disease is an inherited hepatoneurologic disorder caused by mutations in the copper transporter ATP7B. Liver disease from Wilson's disease is one leading cause of cirrhosis in adolescents. Current copper chelators and zinc salt treatments improve hepatic presentations but frequently worsen neurologic symptoms. In this study, we showed the function and machinery of neutrophil heterogeneity using a zebrafish/murine/cellular model of Wilson's disease. METHODS: We investigated the neutrophil response in atp7b-/- zebrafish by live imaging, movement tracking, and transcriptional analysis in sorted cells. Experiments were conducted to validate liver neutrophil heterogeneity in Atp7b-/- mice. In vitro experiments were performed in ATP7B-knockout human hepatocellular carcinomas G2 cells and isolated bone marrow neutrophils to reveal the mechanism of neutrophil heterogeneity. RESULTS: Recruitment of neutrophils into the liver is observed in atp7b-/- zebrafish. Pharmacologic stimulation of neutrophils aggravates liver and behavior defects in atp7b-/- zebrafish. Transcriptional analysis in sorted liver neutrophils from atp7b-/- zebrafish reveals a distinct transcriptional profile characteristic of N2 neutrophils. Furthermore, liver N2 neutrophils also were observed in ATP7B-knockout mice, and pharmacologically targeted transforming growth factor ß1, DNA methyltransferase, or signal transducer and activator of transcription 3 reduces liver N2 neutrophils and improves liver function and alleviates liver inflammation and fibrosis in ATP7B-knockout mice. Epigenetic silencing of Socs3 expression by transforming growth factor ß1 contributes to N2-neutrophil polarization in isolated bone marrow neutrophils. CONCLUSIONS: Our findings provide a novel prospect that pharmacologic modulation of N2-neutrophil activity should be explored as an alternative therapeutic to improve liver function in Wilson's disease.


Assuntos
Degeneração Hepatolenticular , Neoplasias Hepáticas , Adolescente , Humanos , Animais , Camundongos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Peixe-Zebra/metabolismo , Neutrófilos/metabolismo , Fator de Crescimento Transformador beta1 , Cobre/metabolismo , Cirrose Hepática/patologia , Camundongos Knockout , Neoplasias Hepáticas/patologia
6.
Biomolecules ; 13(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37238612

RESUMO

Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.


Assuntos
Armadilhas Extracelulares , Doenças do Sistema Nervoso , Humanos , Neutrófilos , Citocinas , Fagocitose , Inflamação
7.
Biomedicines ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37239032

RESUMO

The reactive oxygen species (ROS) production by a single neutrophil after stimulation with S. aureus and E. coli was estimated by an electrochemical amperometric method with a high time resolution. This showed significant variability in the response of a single neutrophil to bacterial stimulation, from a "silent cell" to a pronounced response manifested by a series of chronoamperometric spikes. The amount of ROS produced by a single neutrophil under the influence of S. aureus was 5.5-fold greater than that produced under the influence of E. coli. The response of a neutrophil granulocyte population to bacterial stimulation was analyzed using luminol-dependent biochemiluminescence (BCL). The stimulation of neutrophils with S. aureus, as compared to stimulation with E. coli, caused a total response in terms of ROS production that was seven-fold greater in terms of the integral value of the light sum and 13-fold greater in terms of the maximum peak value. The method of ROS detection at the level of a single cell indicated the functional heterogeneity of the neutrophil population, but the specificity of the cellular response to different pathogens was the same at the cellular and population levels.

8.
Immunol Rev ; 314(1): 399-412, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440642

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 6 million deaths worldwide. COVID-19 is a respiratory disease characterized by pulmonary dysfunction leading to acute respiratory distress syndrome (ARDs), as well as disseminated coagulation, and multi-organ dysfunction. Neutrophils and neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of COVID-19. In this review, we highlight key gaps in knowledge, discuss the heterogeneity of neutrophils during the evolution of the disease, how they can contribute to COVID-19 pathogenesis, and potential therapeutic strategies that target neutrophil-mediated inflammatory responses.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , COVID-19/patologia , Neutrófilos , SARS-CoV-2
9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555469

RESUMO

Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Imunidade Inata , Neoplasias/metabolismo , Microambiente Tumoral
10.
Front Immunol ; 13: 970287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466858

RESUMO

Severe respiratory viral infections, including SARS-CoV-2, have resulted in high mortality rates despite corticosteroids and other immunomodulatory therapies. Despite recognition of the pathogenic role of neutrophils, in-depth analyses of this cell population have been limited, due to technical challenges of working with neutrophils. We undertook an unbiased, detailed analysis of neutrophil responses in adult patients with COVID-19 and healthy controls, to determine whether distinct neutrophil phenotypes could be identified during infections compared to the healthy state. Single-cell RNA sequencing analysis of peripheral blood neutrophils from hospitalized patients with mild or severe COVID-19 disease and healthy controls revealed distinct mature neutrophil subpopulations, with relative proportions linked to disease severity. Disruption of predicted cell-cell interactions, activated oxidative phosphorylation genes, and downregulated antiviral and host defense pathway genes were observed in neutrophils obtained during severe compared to mild infections. Our findings suggest that during severe infections, there is a loss of normal regulatory neutrophil phenotypes seen in healthy subjects, coupled with the dropout of appropriate cellular interactions. Given that neutrophils are the most abundant circulating leukocytes with highly pathogenic potential, current immunotherapies for severe infections may be optimized by determining whether they aid in restoring an appropriate balance of neutrophil subpopulations.


Assuntos
COVID-19 , Humanos , Neutrófilos , SARS-CoV-2 , Gravidade do Paciente , Antivirais
11.
Cancer Biol Med ; 19(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36514901

RESUMO

Neutrophils play an essential role in the defense against bacterial infections and orchestrate both the innate and adaptive immune responses. With their abundant numbers, diverse function and short life span, these cells are at the forefront of immune responses, and have gained attention in recent years because of their presence in tumor sites. Neutrophil involvement pertains to tumor cells' ability to construct a suitable tumor microenvironment (TME) that accelerates their own growth and malignancy, by facilitating their interaction with surrounding cells through the circulatory and lymphatic systems, thereby influencing tumor development and progression. Studies have indicated both pro- and anti-tumor properties of infiltrating neutrophils. The TME can exploit neutrophil function, recruitment, and even production, thus resulting in pro-tumor properties of neutrophils, including promotion of genetic instability, tumor cell proliferation, angiogenesis and suppression of anti-tumor or inflammatory response. In contrast, neutrophils can mediate anti-tumor resistance by direct cytotoxicity to the tumor cells or by facilitating anti-tumor functions via crosstalk with T cells. Here, we summarize current knowledge regarding the effects of neutrophil heterogeneity under homeostatic and tumor conditions, including neutrophil phenotype and function, in cancer biology.


Assuntos
Neoplasias , Neutrófilos , Humanos , Microambiente Tumoral , Neoplasias/patologia , Linfócitos T/patologia
12.
ACS Nano ; 16(3): 4084-4101, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35230826

RESUMO

The complex involvement of neutrophils in inflammatory diseases makes them intriguing but challenging targets for therapeutic intervention. Here, we tested the hypothesis that varying endocytosis capacities would delineate functionally distinct neutrophil subpopulations that could be specifically targeted for therapeutic purposes. By using uniformly sized (∼120 nm in diameter) albumin nanoparticles (ANP) to characterize mouse neutrophils in vivo, we found two subsets of neutrophils, one that readily endocytosed ANP (ANPhigh neutrophils) and another that failed to endocytose ANP (ANPlow population). These ANPhigh and ANPlow subsets existed side by side simultaneously in bone marrow, peripheral blood, spleen, and lungs, both under basal conditions and after inflammatory challenge. Human peripheral blood neutrophils showed a similar duality. ANPhigh and ANPlow neutrophils had distinct cell surface marker expression and transcriptomic profiles, both in naive mice and in mice after endotoxemic challenge. ANPhigh and ANPlow neutrophils were functionally distinct in their capacities to kill bacteria and to produce inflammatory mediators. ANPhigh neutrophils produced inordinate amounts of reactive oxygen species and inflammatory chemokines and cytokines. Targeting this subset with ANP loaded with the drug piceatannol, a spleen tyrosine kinase (Syk) inhibitor, mitigated the effects of polymicrobial sepsis by reducing tissue inflammation while fully preserving neutrophilic host-defense function.


Assuntos
Nanopartículas , Neutrófilos , Albuminas/metabolismo , Animais , Endocitose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Neutrófilos/metabolismo
13.
FEBS J ; 289(13): 3692-3703, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33999496

RESUMO

Neutrophils dominate the immunological landscape of multiple types of solid tumours in mice and humans and exert different pro- or antitumoral activity. This functional heterogeneity has prompted a search for different subsets and classifications of tumour-infiltrating neutrophils with the idea of better delineating their specific roles in cancer. In this review, we describe current studies that highlight specific mechanisms by which neutrophils exert pro- or antitumoral function and focus on how distinct tumour types induce unique functional states in neutrophils, co-opt granulopoiesis, modulate neutrophil ageing and prolong the neutrophil life span. In addition, we discuss how the tissue-specific tumour stroma and the stage of the cancer influence the function and number of tumour-infiltrating neutrophils. Finally, we explore different approaches to enhance the therapeutic efficacy in cancer types dominated by neutrophils.


Assuntos
Neoplasias , Neutrófilos , Animais , Camundongos , Neoplasias/patologia
14.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34548411

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/fisiopatologia , Granulócitos/citologia , Humanos , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Pulmão/fisiopatologia , Modelos Biológicos , Escores de Disfunção Orgânica , SARS-CoV-2 , Índice de Gravidade de Doença
15.
Mol Aspects Med ; 81: 100996, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34284874

RESUMO

Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Inflamação , Neutrófilos , SARS-CoV-2
17.
J Allergy Clin Immunol ; 148(4): 1030-1040, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33745888

RESUMO

BACKGROUND: Neutrophil accumulation in the skin is a hallmark of psoriasis. Novel insights on neutrophil phenotypic and functional heterogeneity raise the question to what extent these cells contribute to the sustained inflammatory skin reaction. OBJECTIVE: We sought to examine the phenotype and functional properties of neutrophils in blood and skin of patients with psoriasis, and the effect of TNF-α and p40(IL-12/IL-23) antibody therapy on circulating neutrophils. METHODS: Thirty-two patients with psoriasis were enrolled in an observational study performed in 2 university hospitals. We evaluated neutrophil phenotype and function using in vitro (co)culture stimulation assays, flow cytometry, multiplex immunohistochemistry, and multispectral imaging of patient-derived blood and skin samples. RESULTS: Cluster of differentiation (CD)10pos and CD10neg neutrophils were increased in peripheral blood of patients with psoriasis. In CD10neg neutrophils, different maturation stages were observed, including a subset resembling aged neutrophils that was 3 times more abundant than in healthy individuals. These aged neutrophils displayed suboptimal canonical neutrophil functions and induced IL-17 and IFN-γ production by T cells in vitro, mediated by neutrophil extracellular trap formation. Also, mature and aged neutrophils were present in psoriatic skin and were found in the vicinity of T cells. Upon antibody therapy, numbers of these cells in circulation decreased. CONCLUSIONS: Patients with psoriasis reveal a unique neutrophil profile in circulation, and 2 distinct neutrophil subsets are present in psoriatic skin. Targeted biological treatment may aid in the containment of sustained neutrophil-mediated inflammation.


Assuntos
Neutrófilos/imunologia , Psoríase/imunologia , Pele/imunologia , Adalimumab/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Humanos , Imunomodulação , Leucócitos Mononucleares/imunologia , Neutrófilos/efeitos dos fármacos , Psoríase/sangue , Ustekinumab/farmacologia
18.
Front Immunol ; 11: 532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411122

RESUMO

Neutrophils act as the first line of defense against invading pathogens. Although traditionally considered in context of their antimicrobial effector functions, the importance of tumor-associated neutrophils (TANs) in the development of cancer has become increasingly clear during the last decade. With regard to their high plasticity, neutrophils were shown to acquire an anti-tumorigenic N1 or a pro-tumorigenic N2 phenotype. Despite the urgent need to get a comprehensive understanding of the interaction of TANs with their tumor microenvironment, most studies still rely on murine tumor models. Here we present for the first time a polarization attempt to generate N1 and N2 neutrophils from primary human neutrophils in vitro. Our results underscore that N1-polarized neutrophils have a pro-inflammatory phenotype characterized among others by a higher level of intercellular adhesion molecule (ICAM)-1 and high secretion of interferon (IFN)γ-induced protein 10 (IP-10)/C-X-C motif chemokine 10 (CXCL10) and tumor necrosis factor (TNF). Further, we demonstrate that neutrophils incubated under a tumor-mimicking in vitro environment show a high cell surface expression of C-X-C motif chemokine receptor 2 (CXCR2) and secrete high levels of interleukin (IL)-8. These findings suggest that it is feasible to polarize blood-derived primary human neutrophils toward N1- and N2-like phenotypes in vitro. Further, we hypothesized that the presence of anti-inflammatory neutrophil phenotype is not a phenomenon limited to cancer but also occurs when neutrophils are infected with intracellular pathogens. Indeed, our findings indicate that N2-polarized neutrophils exert a markedly decreased capacity to kill the protozoan parasite Leishmania donovani and therefore permit parasite persistence.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/imunologia , Neutrófilos/imunologia , Humanos , Leishmania donovani/imunologia , Fenótipo
19.
Front Immunol ; 10: 2603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781107

RESUMO

Low Density Granulocytes (LDGs), which appear in the peripheral blood mononuclear cell layer of density-separated blood, are seen in cancer, sepsis, autoimmunity, and pregnancy. Their significance in ANCA vasculitis (AAV) is little understood. As these cells bear the autoantigens associated with this condition and have been found to undergo spontaneous NETosis in other diseases, we hypothesized that they were key drivers of vascular inflammation. We found that LDGs comprise a 3-fold higher fraction of total granulocytes in active vs. remission AAV and disease controls. They are heterogeneous, split between cells displaying mature (75%), and immature (25%) phenotypes. Surprisingly, LDGs (unlike normal density granulocytes) are hyporesponsive to anti-myeloperoxidase antibody stimulation, despite expressing myeloperoxidase on their surface. They are characterized by reduced CD16, CD88, and CD10 expression, higher LOX-1 expression and immature nuclear morphology. Reduced CD16 expression is like that observed in the LDG population in umbilical cord blood and in granulocytes of humanized mice treated with G-CSF. LDGs in AAV are thus a mixed population of mature and immature neutrophils. Their poor response to anti-MPO stimulation suggests that, rather than being a primary driver of AAV pathogenesis, LDGs display characteristics consistent with generic emergency granulopoiesis responders in the context of acute inflammation.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Autoanticorpos/imunologia , Granulócitos/fisiologia , Peroxidase/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/enzimologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Antígenos de Superfície/metabolismo , Contagem de Células , Feminino , Citometria de Fluxo , Proteínas Ligadas por GPI/metabolismo , Granulócitos/imunologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mielopoese , Fenótipo , Receptores de IgG/metabolismo
20.
FASEB J ; 33(12): 13660-13668, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31593636

RESUMO

Olfactomedin-4 (OLFM4) identifies a subset of neutrophils conserved in both mouse and man, associated with worse outcomes in several inflammatory conditions. We investigated the role of OLFM4-positive neutrophils in murine intestinal ischemia/reperfusion (IR) injury. Wild-type (WT) C57Bl/6 and OLFM4 null mice were subjected to intestinal IR injury and then monitored for survival or tissues harvested for further analyses. In vivo intestinal barrier function was determined via functional assay of permeability to FITC-dextran. OLFM4 null mice had a significant 7-d survival benefit and less intestinal barrier dysfunction compared with WT. Early after IR, WT mice had worse mucosal damage on histologic examination. Experiments involving adoptive transfer of bone marrow demonstrated that the mortality phenotype associated with OLFM4-positive neutrophils was transferrable to OLFM4 null mice. After IR injury, WT mice also had increased intestinal tissue activation of NFκB and expression of iNOS, 2 signaling pathways previously demonstrated to be involved in intestinal IR injury. In combination, these experiments show that OLFM4-positive neutrophils are centrally involved in the pathologic pathway leading to intestinal damage and mortality after IR injury. This may provide a therapeutic target for mitigation of intestinal IR injury in a variety of common clinical situations.-Levinsky, N. C., Mallela, J., Opoka, A., Harmon, K., Lewis, H. V., Zingarelli, B., Wong, H. R., Alder, M. N. The olfactomedin-4 positive neutrophil has a role in murine intestinal ischemia/reperfusion injury.


Assuntos
Glicoproteínas/fisiologia , Intestinos/patologia , Neutrófilos/patologia , Traumatismo por Reperfusão/etiologia , Animais , Apoptose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA