Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.720
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1538029

RESUMO

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Assuntos
Sesquiterpenos/farmacologia , Lipopolissacarídeos/farmacologia , Células Endoteliais/efeitos dos fármacos
2.
J Vasc Res ; : 1-18, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38952123

RESUMO

INTRODUCTION: The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart. METHODS: All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated. RESULTS: Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size. CONCLUSIONS: The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.

3.
Front Plant Sci ; 15: 1413653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952846

RESUMO

Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.

4.
Biochem Biophys Res Commun ; 727: 150315, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38950493

RESUMO

In response to mechanical loading of bone, osteocytes produce nitric oxide (NO•) and decrease sclerostin protein expression, leading to an increase in bone mass. However, it is unclear whether NO• production and sclerostin protein loss are mechanistically linked, and, if so, the nature of their hierarchical relationship within an established mechano-transduction pathway. Prior work showed that following fluid-shear stress (FSS), osteocytes produce NOX2-derived reactive oxygen species, inducing calcium (Ca2+) influx. Increased intracellular Ca2+ results in calcium-calmodulin dependent protein kinase II (CaMKII) activation, which regulates the lysosomal degradation of sclerostin protein. Here, we extend our discoveries, identifying NO• as a regulator of sclerostin degradation downstream of mechano-activated CaMKII. Pharmacological inhibition of nitric oxide synthase (NOS) activity in Ocy454 osteocyte-like cells prevented FSS-induced sclerostin protein loss. Conversely, short-term treatment with a NO• donor in Ocy454 cells or isolated murine long bones was sufficient to induce the rapid decrease in sclerostin protein abundance, independent of changes in Sost gene expression. Ocy454 cells express all three NOS genes, and transfection with siRNAs targeting eNOS/Nos3 was sufficient to prevent FSS-induced loss of sclerostin protein, while siRNAs targeting iNOS/Nos2 mildly blunted the loss of sclerostin but did not reach statistical significance. Similarly, siRNAs targeting both eNOS/Nos3 and iNOS/Nos2 prevented FSS-induced NO• production. Together, these data show iNOS/Nos2 and eNOS/Nos3 are the primary producers of FSS-dependent NO•, and that NO• is necessary and sufficient for sclerostin protein control. Further, selective inhibition of elements within this sclerostin-controlling mechano-transduction pathway indicated that NO• production occurs downstream of CaMKII activation. Targeting Camk2d and Camk2g with siRNA in Ocy454 cells prevented NO• production following FSS, indicating that CaMKII is needed for NO• production. However, NO• donation (1min) resulted in a significant increase in CaMKII activation, suggesting that NO• may have the ability to tune CaMKII response. Together, these data support that CaMKII is necessary for, and may be modulated by NO•, and that the interaction of these two signals is involved in the control of sclerostin protein abundance, consistent with a role in bone anabolic responses.

5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928469

RESUMO

The SPRY domain-containing SOCS box proteins SPSB1, SPSB2, and SPSB4 utilize their SPRY/B30.2 domain to interact with a short region in the N-terminus of inducible nitric oxide synthase (iNOS), and recruit an E3 ubiquitin ligase complex to polyubiquitinate iNOS, resulting in the proteasomal degradation of iNOS. Inhibitors that can disrupt the endogenous SPSB-iNOS interactions could be used to augment cellular NO production, and may have antimicrobial and anticancer activities. We previously reported the rational design of a cyclic peptide inhibitor, cR8, cyclo(RGDINNNV), which bound to SPSB2 with moderate affinity. We, therefore, sought to develop SPSB inhibitors with higher affinity. Here, we show that cyclic peptides cR7, cyclo(RGDINNN), and cR9, cyclo(RGDINNNVE), have ~6.5-fold and ~2-fold, respectively, higher SPSB2-bindng affinities than cR8. We determined high-resolution crystal structures of the SPSB2-cR7 and SPSB2-cR9 complexes, which enabled a good understanding of the structure-activity relationships for these cyclic peptide inhibitors. Moreover, we show that these cyclic peptides displace full-length iNOS from SPSB2, SPSB1, and SPSB4, and that their inhibitory potencies correlate well with their SPSB2-binding affinities. The strongest inhibition was observed for cR7 against all three iNOS-binding SPSB proteins.


Assuntos
Peptídeos Cíclicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Humanos , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
6.
Antioxidants (Basel) ; 13(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38929072

RESUMO

Recent research suggests that photobiomodulation therapy (PBMT) positively impacts the vascular function associated with various cerebrovascular diseases. Nevertheless, the specific mechanisms by which PBMT improves vascular function remain ambiguous. Since endothelial nitric oxide synthase (eNOS) is crucial in regulating vascular function following cerebral ischemia, we investigated whether eNOS is a key element controlling cerebrovascular function and the senescence of vascular endothelial cells following PBMT treatment. Both rat photothrombotic (PT) stroke and in vitro oxygen-glucose deprivation (OGD)-induced vascular endothelial injury models were utilized. We demonstrated that treatment with PBMT (808 nm, 350 mW/cm2, 2 min/day) for 7 days significantly reduced PT-stroke-induced vascular permeability. Additionally, PBMT inhibited the levels of endothelial senescence markers (senescence green and p21) and antiangiogenic factor (endostatin), while increasing the phospho-eNOS (Ser1177) in the peri-infarct region following PT stroke. In vitro study further indicated that OGD increased p21, endostatin, and DNA damage (γH2AX) levels in the brain endothelial cell line, but they were reversed by PBMT. Intriguingly, the beneficial effects of PBMT were attenuated by a NOS inhibitor. In summary, these findings provide novel insights into the role of eNOS in PBMT-mediated protection against cerebrovascular senescence and endothelial dysfunction following ischemia. The use of PBMT as a therapeutic is a promising strategy to improve endothelial function in cerebrovascular disease.

7.
Antioxidants (Basel) ; 13(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38929104

RESUMO

Nitric oxide (NO) synthesis, signaling, and scavenging is associated to relevant physiological and pathological events. In all tissues and organs, NO levels and related functions are regulated at different levels, with heme proteins playing pivotal roles. Here, we focus on the structural changes related to the different binding modes of NO to heme-Fe(II), as well as the modulatory effects of this diatomic messenger on heme-protein functions. Specifically, the ability of heme proteins to bind NO at either the distal or proximal side of the heme and the transient interchanging of the binding site is reported. This sheds light on the regulation of O2 supply to tissues with high metabolic activity, such as the retina, where a precise regulation of blood flow is necessary to meet the demand of nutrients.

8.
Antioxidants (Basel) ; 13(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38929130

RESUMO

Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.

9.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929158

RESUMO

Protein persulfidation is a thiol-based oxidative posttranslational modification (oxiPTM) that involves the modification of susceptible cysteine thiol groups present in peptides and proteins through hydrogen sulfide (H2S), thus affecting their function. Using sweet pepper (Capsicum annuum L.) fruits as a model material at different stages of ripening (immature green and ripe red), endogenous persulfidated proteins (persulfidome) were labeled using the dimedone switch method and identified using liquid chromatography and mass spectrometry analysis (LC-MS/MS). A total of 891 persulfidated proteins were found in pepper fruits, either immature green or ripe red. Among these, 370 proteins were exclusively present in green pepper, 237 proteins were exclusively present in red pepper, and 284 proteins were shared between both stages of ripening. A comparative analysis of the pepper persulfidome with that described in Arabidopsis leaves allowed the identification of 25% of common proteins. Among these proteins, glutathione reductase (GR) and leucine aminopeptidase (LAP) were selected to evaluate the effect of persulfidation using an in vitro approach. GR activity was unaffected, whereas LAP activity increased by 3-fold after persulfidation. Furthermore, this effect was reverted through treatment with dithiothreitol (DTT). To our knowledge, this is the first persulfidome described in fruits, which opens new avenues to study H2S metabolism. Additionally, the results obtained lead us to hypothesize that LAP could be involved in glutathione (GSH) recycling in pepper fruits.

10.
Antioxidants (Basel) ; 13(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38929179

RESUMO

Nitric oxide (NO) is an important molecule in cell communication that also plays an important role in many biological processes. Given the dual role of NO in nerve degeneration and regeneration after facial nerve injury, we sought to delve deeper into its role through a systematic literature review. A comprehensive review of the literature employing SCOPUS, PubMed, Cochrane Library, EMBASE, and Google Scholar databases was conducted to evaluate the induction and role of NO in neurodegeneration and regeneration after facial nerve injury. From the 20 papers ultimately reviewed, the central findings were that neuronal nitric oxide synthase(nNOS), endothelial nitric oxide synthase (eNOS), and induced nitric oxide synthase (iNOS) increased or decreased depending on the method of facial nerve damage, damaged area, harvested area, and animal age, and were correlated with degeneration and regeneration of the facial nerve. Research conducted on rats and mice demonstrated that NO, nNOS, eNOS, and iNOS play significant roles in nerve regeneration and degeneration. However, the relationship between nerve damage and NO could not be defined by a simple causal relationship. Instead, the involvement of NOS depends on the type of nerve cell, source of NO, timing, and location of expression, age of the target animal, and proximity of the damage location to the brainstem. Consequently, nNOS, eNOS, and iNOS expression levels and functions may vary significantly.

11.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888082

RESUMO

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Assuntos
Imunoterapia , Estresse Oxidativo , Piroptose , Espécies Reativas de Nitrogênio , Microambiente Tumoral , Piroptose/efeitos dos fármacos , Animais , Espécies Reativas de Nitrogênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia
13.
Biosens Bioelectron ; 261: 116485, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852323

RESUMO

Developing quantitative biosensors of superoxide (O2•-) and nitric oxide (NO) anion is crucial for pathological research. As of today, the main challenge for electrochemical detection is to develop high-selectivity nano-mimetic materials to replace natural enzymes. In this study, the dendritic-like morphological structure of silver organic framework (Ag-MOF) was successfully synthesized via a solvothermal strategy. Owing to the introduction of polymeric composites results in improved electrical conductivity and catalytic activity, which promotes mass transfer and leads to faster electron efficiency. For monitoring the electrochemical signals of O2•- and NO, the Ag-MOF electrode substrate was produced by drop-coating, and composites were designed by cyclic voltammetric potential cycles. The designed electrode substrates demonstrate high sensitivity, wide linear concentrations of 1 nM-1000 µM and 1 nM-850 µM, and low detection limits of 0.27 nM and 0.34 nM (S/N = 3) against O2•- and NO. Aside from that, the sensor successfully monitored the cellular release of O2•-, and NO from HepG2 and RAW 264.7 living cells and has the potential to monitor exogenous NO release from donors of Diethylamine (DEA)-NONOate and sodium nitroprusside (SNP). Additionally, the developed system was applied to the analysis of O2•- and NO in real biological fluid samples, and the results were good satisfactory (94.10-99.57 ± 1.23%). The designed system provides a novel approach to obtaining a good electrochemical biosensor platform that is highly selective, stable, and flexible. Finally, the proposed method provides a quantitative way to follow the dynamic changes in O2•- and NO in biological systems.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Óxido Nítrico , Superóxidos , Técnicas Biossensoriais/métodos , Óxido Nítrico/análise , Óxido Nítrico/química , Humanos , Superóxidos/análise , Superóxidos/química , Técnicas Eletroquímicas/métodos , Camundongos , Animais , Células Hep G2 , Células RAW 264.7 , Catálise , Limite de Detecção , Estruturas Metalorgânicas/química , Prata/química , Biomarcadores/análise , Doadores de Óxido Nítrico/química
14.
Proc Natl Acad Sci U S A ; 121(26): e2316422121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900790

RESUMO

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.


Assuntos
Óxido Nítrico , Oxirredução , Oxirredutases , Filogenia , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Archaea/metabolismo , Archaea/genética , Rhodothermus/metabolismo , Rhodothermus/enzimologia , Rhodothermus/genética , Evolução Molecular , Bactérias/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
15.
Plant Physiol Biochem ; 214: 108852, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38943878

RESUMO

Abiotic stress such as salt, heavy metals, drought, temperature, and others can affect plants from seed germination to seedling growth to reproductive maturity. Abiotic stress increases reactive oxygen species and lowers antioxidant enzymes in plants resulted the plant tolerance ability against stress conditions decrease. Hydrogen sulfide (H2S) and nitric oxide (NO) are important gasotransmitters involved in seed germination, photosynthesis, growth and development, metabolism, different physiological processes and functions in plants. In plants, various enzymes are responsible for the biosynthesis of both H2S and NO via both enzymatic and non-enzymatic pathways. They also mediate post-translation modification, such as persulfidation, and nitrosylation, which are protective mechanisms against oxidative damage. They also regulate some cellular signalling pathways in response to various abiotic stress. H2S and NO also stimulate biochemical reactions in plants, including cytosolic osmoprotectant accumulation, reactive oxygen species regulation, antioxidant system activation, K+ uptake, and Na+ cell extrusion or vacuolar compartmentation. In this review, we summarize how H2S and NO interact with each other, the function of both H2S and NO, the mechanism of biosynthesis, and post-translational modification under different abiotic stress. Our main emphasis was to find the cross-talk between NO and H2S and how they regulate genes in plants under abiotic stress.

16.
Curr Probl Cardiol ; : 102734, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944226

RESUMO

Arterial hypertension is a multifaceted condition influenced by numerous pathophysiological factors. The key contributors to its pathogenesis encompass an unhealthy lifestyle, dysregulation of the sympathetic nervous system, alterations in the activity of adrenergic receptors, disruptions in sodium metabolism, structural and functional abnormalities in the vascular bed, as well as endothelial dysfunction, low-grade inflammation, oxidative stress etc. Despite extensive research into the mechanisms of arterial hypertension development over the centuries, its pathogenesis remains incompletely understood, and the selection of an effective treatment strategy continues to pose a significant challenge. Arterial hypertension is characterized by a diminished sensitivity of the ß-adrenergic system, leading to the utilization of ß-adrenergic blockers and other antihypertensive drugs in its treatment. This review delves into the mechanisms of action of beta-adrenergic receptor blockers in the treatment of hypertension and their respective effects.

17.
Chem Biol Interact ; : 111120, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944327

RESUMO

Dibutyl phthalate (DBP) is widely used in many consumer and personal care products. Here, we report vascular endothelial response to DBP in three different exposure scenarios: after short-term exposure (24 h) of human endothelial cells (ECs) EA.hy926 to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. We examined different vascular functions such as migration of ECs, adhesion of ECs to the extracellular matrix, tube formation, the morphology of rat aorta, as well as several signaling pathways involved in controlling endothelial function. Short-term in vitro exposure to DBP increased migration of ECs through G protein-coupled estrogen receptor, extracellular signal-regulated kinase 1/2, and nitric oxide (NO) signaling and decreased adhesion to gelatin. Long-term in vitro exposure to DBP transiently increased EC migration and had a bidirectional effect on EC adhesion to gelatin and tube formation. These effects were accompanied by a sustained increase in NO production and endothelial NO synthase (eNOS) and Akt activity. In vivo, exposure to DBP for 90 days decreased the aortic wall-to-lumen ratio and increased eNOS and Akt phosphorylation in ECs of rat aorta. This comparative investigation has shown that exposure to DBP may affect vascular function by altering EC migration, adhesion to gelatin, and tube formation after short- and long-term in vitro exposure and by decreasing the aortic wall-to-lumen ratio in vivo. The eNOS-NO and Akt signaling could be important in mediating the effects of DBP in long-term exposure scenarios.

18.
Am J Vet Res ; : 1-7, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936408

RESUMO

OBJECTIVE: To describe the use of a novel wound dressing that delivers nitric oxide (NO) to naturally occurring traumatic wounds in dogs. ANIMALS: 24 client-owned dogs with 30 wounds. METHODS: Dogs were presented with acute traumatic wounds requiring open wound management. Wounds were bandaged with a novel NO wound dressing and reassessed as needed for continued open wound management until wounds healed by second intention or wound closure was recommended. Dogs could be removed from the study at any point at the clinician's discretion. RESULTS: All wounds had the novel NO wound dressing used during open wound management until wound closure was recommended. Median time to wound closure was 6 days (range, 2 to 42). There were no complications directly attributed to the use of the novel wound dressing that clinically affected the dogs. Three wounds dehisced following wound closure. Wound healing was confirmed in 19 dogs with 25 wounds, with 3 dogs lost to follow-up prior to suture removal. Only 7.1% of wounds had clinical signs consistent with wound infection following wound closure. CLINICAL RELEVANCE: The novel NO wound dressing was easy to use and well tolerated in dogs with naturally occurring traumatic wounds. It can be used throughout all phases of wound healing, simplifying open wound management.

19.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936976

RESUMO

Estrogen receptor (ER)-negative breast cancers are known to be aggressive and unresponsive to anti-estrogen therapy, and triple negative breast cancers are associated with poor prognosis and metastasis. Thus, new targeted therapies are needed. FOXM1 is abundantly expressed in human cancers and implicated in protecting tumor cells from oxidative stress by reducing the levels of intracellular reactive oxygen species (ROS). Aspirin, a prototypical anti-cancer agent with deleterious side effects, has been modified to release nitric oxide and hydrogen sulfide, called NOSH-aspirin (NOSH-ASA), generating a 'safer' class of new anti-inflammatory agents. We evaluated NOSH-ASA against (ER)-negative breast cancer using cell lines and a xenograft mouse model. NOSH-ASA strongly inhibited growth of MDA-MB-231 and SKBR3 breast cancer cells with low IC50s of 90{plus minus}5 and 82{plus minus}5 nM, respectively, with marginal effects on a normal breast epithelial cell line. NOSH-ASA inhibited cell proliferation, caused G0/G1 phase arrest, increased apoptosis, and was associated with increases in ROS. In MDA-MB-231 cell xenografts, NOSH-ASA reduced tumor size markedly, which was associated with reduced proliferation (decreased PCNA expression), induction of apoptosis (increased TUNEL positive cells), and increased ROS, while NF-kB and FoxM1 that were high in untreated xenografts were significantly reduced. mRNA data for FoxM1, p21 and CyclinD1 corroborated with the respective protein expressions and arrest of cells. Taken together, these molecular events contribute to NOSH-ASA mediated growth inhibition and apoptotic death of (ER)-negative breast cells in vitro and in vivo. Additionally, as a ROS-inducer and FOXM1-inhibitor, NOSH-ASA has potential as a targeted therapy. Significance Statement In this investigation, we examined the cellular effects and xenograft tumor inhibitory potential of NOSH-aspirin, an NO and H2S-donating hybrid, against ER-negative breast cancer, which currently lacks effective therapeutic options. The induction of reactive oxygen species and subsequent downregulation of FOXM1 represents a plausible mechanism contributing to the observed decrease in cell proliferation and concurrent increase in apoptosis. NOSH-ASA demonstrated a remarkable reduction in tumor size by 90% without inducing any observable gross toxicity, underscoring its promising translational potential.

20.
Biomolecules ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927094

RESUMO

Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/ßcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.


Assuntos
Colesterol , Hipóxia , Pré-Eclâmpsia , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez , Feminino , Colesterol/metabolismo , Hipóxia/metabolismo , Placenta/metabolismo , Transdução de Sinais , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA