RESUMO
Biological nitrogen fixation (BNF) is a crucial process that provides bioavailable nitrogen and supports primary production in freshwater lake ecosystems. However, the characteristics of diazotrophic community and nitrogenase activity in freshwater lake sediments remain poorly understood. Here, we investigated the diazotrophic communities and nitrogenase activities in the sediments of three large river-connected freshwater lakes in eastern China using 15N-isotope tracing and nifH sequencing. The sediments in these lakes contained diverse nitrogenase genes that were phylogenetically grouped into Clusters I and III. The diazotrophic communities in the sediments were dominated by stochastic processes in Hongze Lake and Taihu Lake, which had heterogeneous habitats and shallower water depths, while in Poyang Lake, which had deeper water and a shorter hydraulic retention time, the assembly of the diazotrophic community in the sediments was dominated by homogeneous selection processes. Temperature and water depth were also found the key environmental factors affecting the sediment diazotrophic communities. Sediment nitrogenase activities varied in the three lakes and within distinct regions of an individual lake, ranging from 0 to 14.58 nmol/(kg·hr). Nitrogenase activity was significantly correlated with ferric iron, total phosphorus, and organic matter contents. Our results suggested that freshwater lake sediment contain high diversity of nitrogen-fixing microorganisms with potential metabolic diversity, and the community assembly patterns and nitrogenase activities varied with the lake habitat.
Assuntos
Lagos , Fixação de Nitrogênio , Nitrogenase , Lagos/microbiologia , China , Nitrogenase/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Rios/microbiologia , Ecossistema , FilogeniaRESUMO
The electrochemical carbon dioxide reduction reaction (CO2RR) to high value-added fuels or chemicals driven by the renewable energy is promising to alleviate global warming. However, the selective CO2 reduction to C2 products remains challenge. Cu-based catalyst with the specific Cu0 and Cu+ sites is important to generate C2 products. This work used nitrogen (N) to tune amounts of Cu0 and Cu+ sites in Cu2O catalysts and improve C2-product conversion. The controllable Cu0/Cu+ ratio of Cu2O catalyst from 0.16 to 15.19 was achieved by adjusting the N doping amount using NH3/Ar plasma treatment. The major theme of this work was clarifying a volcano curve of the ethylene Faraday efficiency as a function of the Cu0/Cu+ ratio. The optimal Cu0/Cu+ ratio was determined as 0.43 for selective electroreduction CO2 to ethylene. X-ray spectroscopy and density functional theory (DFT) calculations were employed to elucidate that the strong interaction between N and Cu increased the binding energy of NCu bond and stabilize Cu+, resulting in a 92.3% reduction in the potential energy change for *CO-*CO dimerization. This study is inspiring in designing high performance electrocatalysts for CO2 conversion.
Assuntos
Dióxido de Carbono , Cobre , Etilenos , Oxirredução , Cobre/química , Etilenos/química , Dióxido de Carbono/química , Catálise , Nitrogênio/química , Técnicas Eletroquímicas/métodos , Modelos QuímicosRESUMO
Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor. An economical solid carbon source was developed by composition of polyvinyl alcohol, sodium alginate, and corncob, which was utilized as external carbon source in the anaerobic anoxic oxic (AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage, and the nitrogen removal was remarkably improved from 63.2% to 96.5%. Furthermore, the effluent chemical oxygen demand maintained at 35 mg/L or even lower, and the total nitrogen was reduced to less than 2 mg/L. Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides, respectively. The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO3--N to NO2--N conversion in both AAO and the biofilter reactors, thus enabled stable reaction. The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abundance of genes related to the tricarboxylic acid cycle, and then guaranteed efficient carbon metabolism. The results indicate that the composite carbon source is feasible for denitrification enhancement of AAO-biofilter, which contribute to the theoretical foundation for practical nitrogen removal application.
Assuntos
Carbono , Desnitrificação , Metagenômica , Eliminação de Resíduos Líquidos , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Reatores Biológicos , Anaerobiose , Esgotos , Filtração/métodosRESUMO
As an important component of secondary aerosols, sulfate plays a crucial role in regulating atmospheric radiative balance and influencing the secondary formation of ozone (O3). In real atmosphere, atmospheric oxidants NO2 and O3 can promote the oxidation of SO2 to form sulfate (SO42-) through multiphase chemistry that occur at different time scales. Due to the combined impact of meteorology, pollution sources, atmospheric chemistry, etc., time-scale dependence of SO2-SO42- conversion makes the impact of NO2/O3 on it more complex. In this study, based on long-term time series (2013-2020) of air pollution variables from seven stations in Hong Kong, the Multifractal Detrended Cross-Correlation Analysis (MFDCCA) method has been employed to quantify the cross-correlations between SO2 and SO42- in real atmosphere at different time scales, for examining the time-scale dependence of SO2-SO42- conversion efficiency. Furthermore, the Pearson correlation analysis has been used to study the influence of NO2/O3 on SO2-SO42- conversion, and the regional and seasonal differences have been analyzed by considering factors such as meteorology, pollution sources, and regional transport. Changes in the main components of secondary aerosols are closely linked with the co-control of regional PM2.5 and O3. Therefore, the exploration of the impact of co-existing NO2/O3 gases on the secondary formation of sulfates in real atmosphere is significant.
Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Dióxido de Nitrogênio , Ozônio , Sulfatos , Ozônio/química , Sulfatos/química , Sulfatos/análise , Atmosfera/química , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Hong Kong , Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Dióxido de Enxofre/análise , Dióxido de Enxofre/químicaRESUMO
As a widely used fertilizer, urea significantly promotes the leaching of dissolved organic nitrogen (DON) in soils and aggravates nitrogen contamination in groundwater. Clay minerals are considered the most important factor in retaining DON. However, the effect of urea on the retention of DON with different molecular weights by clay minerals is unknown. In this study, the retention of both low-molecular weight DON (LMWD) and high-molecular weight DON (HMWD) by clay minerals in the presence of urea was investigated. For this purpose, batch adsorption and soil column leaching experiments, characterization analysis (Fourier transform infrared spectroscopy X-ray diffraction, and X-ray photoelectron spectroscopy), and molecular dynamics simulations were carried out. Urea had a positive effect on the adsorption of LMWD, whereas a competitive effect existed for the adsorption of HMWD. The dominant interactions among DON, urea, and clay minerals included H-bonding, ligand exchange, and cation exchange. The urea was preferentially adsorbed on clay minerals and formed a complex, which provided more adsorption sites to LMWD and only a few to HMWD. The presence of urea increased the retention of LMWD and decreased the retention of HMWD in clay minerals. The retention capacity of LMWD increased by 6.9%-12.8%, while that of HMWD decreased by 6.7%-53.1%. These findings suggest that LMWD tended to be trapped in soils, while HMWD was prone to be leached into groundwater, which can be used to evaluate the leaching of DON from soil to groundwater.
Assuntos
Argila , Nitrogênio , Solo , Ureia , Ureia/química , Argila/química , Solo/química , Nitrogênio/química , Nitrogênio/análise , Adsorção , Peso Molecular , Minerais/química , Poluentes do Solo/química , Poluentes do Solo/análise , Modelos Químicos , Fertilizantes/análise , Silicatos de Alumínio/químicaRESUMO
The removal of ammonia nitrogen (NH4+-N) and bacteria from aquaculture wastewater holds paramount ecological and production significance. In this study, Pt/RuO2/g-C3N4 photocatalysts were prepared by depositing Pt and RuO2 particles onto g-C3N4. The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectrometer (UV-vis DRS). The photocatalysts were then applied to the removal of both NH4+-N and bacteria from simulated mariculture wastewater. The results clarified that the removals of both NH4+-N and bacteria were in the sequence of g-C3N4 < RuO2/g-C3N4 < Pt/g-C3N4 < Pt/RuO2/g-C3N4. This magnificent photocatalytic ability of Pt/RuO2/g-C3N4 can be interpreted by the transfer of holes from g-C3N4 to RuO2 to facilitate the in situ generation of HClO from Cl- in wastewater, while Pt extracts photogenerated electrons for H2 formation to enhance the reaction. The removal of NH4+-N and disinfection effect were more pronounced in simulated seawater than in pure water. The removal efficiency of NH4+-N increases with an increase in pH of wastewater, while the bactericidal effect was more significant under a lower pH in a pH range of 6-9. In actual seawater aquaculture wastewater, Pt/RuO2/g-C3N4 still exhibits effective removal efficiency of NH4+-N and bactericidal performance under sunlight. This study provides an alternative avenue for removement of NH4+-N and bacteria from saline waters under sunlight.
Assuntos
Amônia , Bactérias , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Amônia/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Rutênio/química , Luz , Aquicultura/métodos , Platina/química , Catálise , Grafite , Compostos de NitrogênioRESUMO
Nitrogen oxides (NOx) are crucial in tropospheric photochemical ozone (O3) production and oxidation capacity. Currently, the widely used NOx measurement technique is chemiluminescence (CL) (CL-NOx), which tends to overestimate NO2 due to atmospheric oxidation products of NOx (i.e., NOz). We developed and characterized a NOx measurement system using the cavity attenuated phase shift (CAPS) technique (CAPS-NOx), which is free from interferences with nitrogen-containing species. The NOx measured by the CAPS-NOx and CL-NOx analyzers were compared. Results show that both analyzers showed consistent measurement results for NO, but the NO2 measured by the CAPS-NOx analyzer (NO2_CAPS) was mostly lower than that measured by the CL-NOx analyzer (NO2_CL), which led to the deviations in O3 formation sensitivity regime and Ox (= O3 + NO2) sources (i.e., regional background and photochemically produced Ox) determined by the ozone production efficiencies (OPE) calculated from NO2_CL and NO2_CAPS. Overall, OPE_CL exceeded OPE_CAPS by 18.9%, which shifted 3 out of 13 observation days from the VOCs-limited to the transition regime when judging using OPE_CL, as compared to calculations using OPE_CAPS. During the observation period, days dominated by regional background Ox accounted for 46% and 62% when determined using NO2_CL and NO2_CAPS, respectively. These findings suggest that the use of the CL-NOx analyzer tends to underestimate both the VOCs-limited regime and the regional background Ox dominated days. The newly built CAPS-NOx analyzer here can promote the accurate measurement of NO2, which is meaningful for diagnosing O3 formation regimes and Ox sources.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Óxidos de Nitrogênio , Ozônio , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Ozônio/análise , Atmosfera/químicaRESUMO
The anchoring sites of metal single atoms are closely related to photogenerated carrier dynamics and surface reactions. Achieving smooth photogenerated charge transfer through precise design of single-atom anchoring sites is an effective strategy to enhance the activity of photocatalytic hydrogen evolution. In this study, Pt single atoms were loaded onto ultra-thin carbon nitride with two-coordination nitrogen vacancies (VN2c-UCN-Pt) and ultra-thin carbon nitride with three-coordination nitrogen vacancies (VN3c-UCN-Pt). This paper investigated the photocatalytic hydrogen evolution performance and photogenerated carrier behavior of Pt single atoms at different anchoring sites. Surface photovoltage measurements indicated that VN2c-UCN-Pt exhibits a superior carrier separation efficiency compared to VN3c-UCN-Pt. More importantly, the surface photovoltage signal under the presence of H2O molecules revealed a significant decrease. Theoretical calculations suggest that VN2c-UCN-Pt exhibits superior capabilities in adsorbing and activating H2O molecules. Consequently, the photocatalytic hydrogen evolution efficiency of VN2c-UCN-Pt reaches 1774 µmol g-1h-1, which is 1.8 times that of VN3c-UCN-Pt with the same Pt loading. This work emphasized the structure-activity relationship between single-atom anchoring sites and photocatalytic activity, providing a new perspective for designing precisely dispersed single-atom sites to achieve efficient photocatalytic hydrogen evolution.
RESUMO
Amorphous carbon materials with sophisticated morphologies, variable carbon layer structures, abundant defects, and tunable porosities are favorable as anodes for potassium-ion batteries (PIBs). Synthesizing amorphous carbon materials typically involves the pyrolysis of carbonaceous precursors. Nonetheless, there is still a lack of studies focused on achieving multifaceted structural optimizations of amorphous carbon through precursor formulation. Herein, nitrogen-doped amorphous carbon nanotubes (NACNTs) are derived from a novel composite precursor of cobalt-based metal-organic framework (CMOF) and graphitic carbon nitride (g-CN). The addition of g-CN in the precursor optimizes the structure of amorphous carbon such as morphology, interlayer spacing, nitrogen doping, and porosity. As a result, NACNTs demonstrate significantly improved electrochemical performance. The specific capacities of NACNTs after cycling at current densities of 100 mA/g and 1000 mA/g increased by 194 % and 230 %, reaching 346.6 mAh/g and 211.8 mAh/g, respectively. Furthermore, the NACNTs anode is matched with an organic cathode for full-cell evaluation. The full-cell attains a high specific capacity of 106 mAh/gcathode at a current density of 100 mA/g, retaining 90.5 % of the specific capacity of the cathode half-cell. This study provides a valuable reference for multifaceted structural optimization of amorphous carbon to improve potassium-ion storage capability.
RESUMO
Surface states have been a longstanding and sometimes underestimated problem in gallium nitride (GaN) based devices. The instability caused by surface-charge-trapping in GaN-based transistors is practically the same problem faced by the inventors of the silicon (Si) field effect transistors more than half a century ago. Although in Si this problem was eventually solved by oxygen and hydrogen-based passivation, in GaN, such breakthrough has yet to be made. Apparently, some of this surface charge originates in molecules adsorbed on its surface. Here, it is shown that the charge density associated with the GaN yellow band desorbs upon mild heat treatment in vacuum and re-adsorbs on exposure to the air. Selective exposure of GaN to nitrogen dioxide (NO2) reproduces this surface charge to its original distribution, as does exposure to air. Residual gas analysis of the gases desorbed during heat treatment shows a large concentration of nitric oxide (NO). These observations suggest that selective adsorption of NO2 is responsible for the surface charge that deleteriously affects the electrical properties of GaN. The physics and chemistry of this NO2 adsorption, reported here, may open a new path in the search for passivation to improve GaN device reliability.
RESUMO
Transition metal oxides represent a promising category of pseudocapacitive materials for potassium-ion hybrid supercapacitors (PIHCs) characterized by high energy density. Nevertheless, their utility is hindered by intrinsic low conductivity, restricted electrochemical sites, and notable volume expansion, all of which directly contribute to the degradation of their electrochemical performance, thereby limiting their practical applicability in supercapacitor systems. In this study, we present a facile synthesis approach to fabricate nitrogen-doped carbon-supported oxygen vacancy-rich Co2NiO4 nanoflowers (Ov-Co2NiO4/NC NFs) featuring tunable surface layering and electron distribution. The nanoflower structure augments the contact area between the material and the electrolyte. Density functional theory (DFT) calculations reveal oxygen vacancies could bring an enhanced charge density across the entire Fermi level in Co2NiO4 and expand the interatomic distances between adjacent cobalt and nickel atoms to 3.370 Å. N-doped carbon carriers further accelerate charge transfer, increase the electrostatic energy storage and inhibit the structural collapse of Co2NiO4. These structural modifications serve to improve electrochemical reaction kinetics, augment the binding energy of K+ (-2.87 eV), and mitigate structural variations during K+ storage. In a 6 M KOH electrolyte, Ov-Co2NiO4/NC NF exhibits a specific capacitance of 1104 F g-1 at a current density of 0.5 A g-1, with a remarkable capacitance retention rate of 91.48 % after 6500 cycles. Furthermore, the assembled PIHCs demonstrate an energy density of 47.8 Wh kg-1 and an ultra-high power density of 376 W kg-1, alongside notable cycle stability, retaining 90.13 % of its capacitance after 8000 cycles in a 6 M KOH electrolyte.
RESUMO
The photocatalytic efficiency can be improved by constructing a Z-scheme heterojunction, but hindered by the only half utilization efficiency of photogenerated carriers. Thus, a novel material, UiO-66-NH2@TAPB-BTCA-COP-Ag (U6N@COP-Ag), with surface plasmon resonance (SPR) effect synergistic Z-scheme heterostructure has been prepared by depositing Ag nanoparticles (Ag NPs) on TAPB-BTCA-COP (COP)-coated UiO-66-NH2. The deposited Ag NPs expand the range of light absorption and introduce more photogenerated electrons in the composite. The SPR effect of noble metal compensates for the limited utilization of the Z-scheme heterojunction photogenerated carriers and the increased density of semiconductor carriers at the reducing end, which is more conducive to the redox reaction of the catalyst. Without sacrificial agents, U6N@COP-Ag shows great photocatalytic nitrogen reduction conversion efficiency with the rate of NH4+ in ammonia water at 167.63µmol g-1h-1, which is 6.6 and 2.8 times that of the original UiO-66-NH2 and COP, respectively. In-situ XPS and Kelvin probe technology verify that UiO-66-NH2 and Ag nanoparticles provide more photogenerated electrons to COP. The cleavage and conversion of N2 to NH4+ on U6N@COP-Ag was confirmed by the enhancement of NH bonds and NH4+ characteristic absorption peaks in the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). This work presents a great method to improve the Z-scheme heterojunction photogenerated carrier utilization and the density of semiconductor carriers at the reducing end by the noble metal SPR effect, which is more conducive to enhance the redox reaction of the catalyst.
RESUMO
Electrochemical synthesis of ammonia is a green and sustainable way for nitrogen fixation, but the development of efficient electrocatalysts still faces challenges. The modulation of electronic structure through interface engineering and vacancy engineering is a new approach to enhance the performance of electrocatalysts. In this work, a phosphorus-doped core-shell heterojunction P-Sb2S3/MoS2 was designed and synthesized by combining antimony, which is inert to H+ adsorption, with molybdenum, which has good affinity and reducibility with nitrogen. The synthesis involved both interfacial engineering and vacancy engineering strategies.DFT calculations demonstrate that the formationofSb2S3/MoS2 heterojunction enhances the creation of a built-in electric field, thereby expediting electron flow.Additionally, phosphorus doping induced the formation of abundant sulfur vacancies, significantly enhancing nitrogen adsorption performance in this material.As a result, our designed structure exhibited excellent NRR performance with an ammonia production rate of 41.22 µg·h-1·mg-1cat and a Faraday efficiency of 15.70 %.The unique structural of this catalyst contribute to a more optimal balance between the rate of ammonia production and the Faraday efficiency. The successful preparation of the highly efficient P-Sb2S3/MoS2 heterojunctionsprovidesanew strategyfor catalyst design in electrocatalytic nitrogen reduction.
RESUMO
Constructing photocatalysts for the stable and efficient production of NH3 is of excellent research significance and challenging. In this paper, the electron acceptor 5-amino-1,10-phenanthroline (AP) is introduced into the electron-donor graphitic carbon nitride (CN) framework by a simple heated copolymerization method to construct a donor-acceptor (D-A) structure. Subsequently, the phenanthroline unit is coordinated with transition metal Fe3+ ions to obtain the photocatalyst Fe(III)-0.5-AP-CN with better nitrogen fixation performance, and the average NH3 yield can reach 825.3 µmol g-1 h-1. Comprehensive experimental results and theoretical calculations show that the presence of the D-A structure can induce intramolecular charge transfer, effectively separating photogenerated electrons and holes. The Fe active sites can improve the chemisorption energy for N2, enhance the N-Fe bonding, and better activate the N2 molecule. Therefore, the synergistic effect between the construction of the D-A structure and the stably dispersed Fe active sites can enable CN to achieve high-performance N2 reduction to produce NH3.
RESUMO
Temperature modulation of the synthesis process of MOF-derived composites is not well understood for changes in the peroxymonosulfate catalytic domain. This study synthesized a carbon-based nitrogen-doped (MN@C) MOF-derived composite catalyst derived from MIL-88B(Fe) (Materials Institute Lavoisier) by modulating temperature changes and calcination. Combined with density-functional theory calculations (DFT) analyses showed that changes in iron nanoparticles (FeNP) and CN content caused the alterations of the degradation pathways. MN@C-9 exhibited outstanding activation performance (100 % carbamazepine (CBZ) removal within 10 min). The system maintained efficient operation in different aqueous environments and a wide pH range and demonstrated efficient removal of many pollutants typical of pharmaceuticals and personal care products (PPCPs). After comprehensively analyzing the results of liquid chromatography mass spectrometry (LC-MS) and toxicity prediction, the possible degradation pathways were reasonably speculated, and the toxicity of the byproducts was greatly reduced. This study provides a potential and efficient catalyst preparation strategy for water purification.
Assuntos
Carbamazepina , Ferro , Nanopartículas Metálicas , Estruturas Metalorgânicas , Temperatura , Poluentes Químicos da Água , Carbamazepina/química , Ferro/química , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Peróxidos/química , Catálise , Teoria da Densidade Funcional , Tamanho da Partícula , Propriedades de Superfície , Purificação da Água/métodosRESUMO
The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.
Assuntos
Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Nitrificação , Nitrogênio/metabolismo , Solo/química , Desnitrificação , Águas Residuárias/química , Esgotos/microbiologia , Microbiologia do Solo , Zeolitas/química , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismoRESUMO
The inhibitory effects of zinc oxide nanoparticles (ZnO NPs) and impacts of N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) on biological nitrogen removal (BNR) performance have been well-investigated. However, the effects of ammonia nitrogen (NH4+-N) concentrations on NP toxicity and AHL regulation have seldom been addressed yet. This study consulted on the impacts of ZnO NPs on BNR systems when high NH4+-N concentration was available. The synergistic toxic effects of high-strength NH4+-N (200 mg/L) and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5% ± 0.2%. The increased extracellular polymeric substances (EPS) production was observed in response to the high NH4+-N and ZnO NP stress, which indicated the defense mechanism against the toxic effects in the BNR systems was stimulated. Furthermore, the regulatory effects of exogenous N-decanoyl-homoserine lactone (C10-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH4+-N concentrations. The C10-HSL regulated the intracellular reactive oxygen species levels, denitrification functional enzyme activities, and antioxidant enzyme activities, respectively. This probably synergistically enhanced the defense mechanism against NP toxicity. However, compared to the low NH4+-N concentration of 60 mg/L, the efficacy of C10-HSL was inhibited at high NH4+-N levels of 200 mg/L. The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.
Assuntos
Amônia , Nitrogênio , Percepção de Quorum , Óxido de Zinco , Óxido de Zinco/toxicidade , Amônia/toxicidade , Percepção de Quorum/efeitos dos fármacos , Nanopartículas/toxicidade , 4-Butirolactona/análogos & derivados , 4-Butirolactona/toxicidade , Nanopartículas Metálicas/toxicidadeRESUMO
The electrocatalytic nitrogen reduction reaction (NRR) is a crucial process in addressing energy shortages and environmental concerns by synthesizing the NH3. However, the difficulty of N2 activation and fewer NRR active sites limit the application of NRR. Therefore, the NRR performance can be improved by rapid electron transport paths to participate in multi-electron reactions and N2 activation. Doping with transition metal element is a viable strategy to provide electrons and electronic channels in the NRR. This study focuses on the synthesis of Fe2(MoO4)3 (FeMo) and x%La-doped FeMo (x = 3, 5, 7, and 10) using the hydrothermal method. La-doping creates electron transport channels Fe2+-O2--Fe3+ and oxygen vacancies, achieving an equal molar ratio of Fe2+/Fe3+. This strategy enables the super-exchange in Fe2+-O2--Fe3+, and then enhances electron transport speed for a rapid hydrogenation reaction. Therefore, the synergistic effect of Fe2+/Fe3+ cycling and oxygen vacancies improves the NRR performance. Notably, 5%La-FeMo demonstrates the superior NRR performance (NH3 yield rate: 29.6 µg h-1 mgcat-1, Faradaic efficiency: 5.8%) at -0.8 V (vs. RHE). This work analyzes the influence of the catalyst electronic environment on the NRR performance based on the effect on different valence states of ions on electron transport.
RESUMO
Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.
RESUMO
Photocatalytic nitrogen reduction reaction (NRR) is a sustainable process for ammonia synthesis under mild conditions. However, photocatalytic NRR activity and are generally limited by inefficient carrier separation and transfer. Therefore, parallel engineering of bulk phase doping and surface coupling is critical to achieving the goal of efficient NRR. In this study, Cl doped BiOBr nanosheet assemblies (BiOBr/Cl) were constructed in delicately designed deep eutectic solvents (DESs), combined with ionothermal methods at low temperatures and Bi3+ exsolution reduction strategy at high temperatures. The unique liquid state and reducibility of DESs induce the reduction of Bi3+ and the in situ coupling of Bi quantum dots at the surface of BiOBr/Cl nanosheets along with the construction of Bi-BiOBr/Cl nanosheet assemblies. The experimental results show that Cl doping could reduce the exciton dissociation energy and promote its dissociation to free carriers. Bi quantum dots could form tightly coupled Schottky junction with BiOBr/Cl enabling the efficient and unidirectional transmission of photogenerated electrons from BiOBr/Cl to metal Bi. The formed electron deficient region at Schottky interface promotes the adsorption and activation of N2. The hierarchical structure of Bi-BiOBr/Cl nanosheet assembly benefits to providing more N2 adsorption active sites. The DFT calculation shows that the accumulation of high concentration of active hydrogen in Bi-BiOBr/Cl leads to a significant decrease of energy barrier of the first step hydrogenation of N2. Bi-BiOBr/Clis more inclined to adsorb nitrogen for NRR in comparison with H* for hydrogen production. The synergistic effect of Cl doping and Bi coupling result in a high NRR activity of Bi-BiOBr/Cl photocatalyst of 6.67 mmol·g-1·h-1, which was 11.3 times higher than that of initial BiOBr. This study provides a promising strategy for designing highly active NRR photocatalysts with high efficiency carrier dissociation and transport.