Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 478: 135506, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39151360

RESUMO

Nitrogen addition is commonly used to remediate total petroleum hydrocarbons (TPH) in petroleum-contaminated soils. However, acceptable exogenous nitrogen dosages and their utilization efficiency for the degradation of hydrocarbons in oil-polluted soils are not well understood. This study compared the hydrocarbon bioremediation capacity by applying different doses of NH4Cl as a stimulant in soils contaminated with TPH at 8553 and 17090 mg/kg. The results showed acceptable exogenous nitrogen levels ranging from 60 to 360 mg N/kg soil, and the optimal nitrogen dosage for TPH remediation was 136 mg N/kg in soils with different TPH concentrations. The nitrogen availability efficiency (NAE) and nitrogen polarization factor availability (NPFA) in the 136 mg N/kg addition treatments were 6.69 and 20.47 mg/mg in 8533 mg/kg TPH-polluted soil, and 6.03 and 31.11 mg/mg in 17090 mg/kg TPH-polluted soil, respectively. Metagenomic analysis revealed that the application of 136 mg/kg nitrogen facilitated ammonia oxidation and nitrite reduction to nitric oxide, and induced soil microorganisms to undergo regulatory or adaptive changes in energy supply and metabolic state, which could aid in restoring the ecological functions of petroleum-contaminated soils. These findings underscore that 136 mg/kg of nitrogen dosage application is optimal for remediation of petroleum-contaminated soils irrespective of the TPH concentrations. This exogenous nitrogen application dosage for TPH remediation aligns with the nitrogen requirements for crop growth in agriculture.

2.
Anim Nutr ; 18: 57-71, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39035982

RESUMO

Dietary nutrient manipulation (e.g. protein fractions) could lower the environmental footprints of ruminants, especially reactive nitrogen (N). This study investigated the impacts of dietary soluble protein (SP) levels with decreased crude protein (CP) on intestinal N absorption, hindgut N metabolism, fecal microbiota and metabolites, and their linkage with N metabolism phenotype. Thirty-two male Hu sheep, with an age of six months and an initial BW of 40.37 ± 1.18 kg, were randomly assigned to four dietary groups. The control diet (CON), aligning with NRC standards, maintained a CP content of 16.7% on a dry matter basis. Conversely, the experimental diets (LPA, LPB, and LPC) featured a 10% reduction in CP compared with CON, accompanied by SP adjustments to 21.2%, 25.9%, and 29.4% of CP, respectively. Our results showed that low-protein diets led to significant reductions in the concentrations of plasma creatinine, ammonia, urea N, and fecal total short-chain fatty acids (SCFA) (P < 0.05). Notably, LPB and LPC exhibited increased total SCFA and propionate concentrations compared with LPA (P < 0.05). The enrichment of the Prevotella genus in fecal microbiota associated with energy metabolism and amino acid (AA) biosynthesis pathways was evident with SP levels in low-protein diets of approximately 25% to 30%. Moreover, LPB and LPC diets demonstrated a decrease in fecal NH 4 + -N and NO 2 - -N contents as well as urease activity, compared with CON (P < 0.05). Concomitantly, reductions in fecal glutamic acid dehydrogenase gene (gdh), nitrite reductase gene (nirS), and nitric oxide reductase gene (norB) abundances were observed (P < 0.05), pointing towards a potential reduction in reactive N production at the source. Of significance, the up-regulation of mRNA abundance of AA and peptide transporters in the small intestine (duodenum, jejunum, and ileum) and the elevated concentration of plasma AA (e.g. arginine, methionine, aspartate, glutamate, etc.) underscored the enhancement of N absorption and N efficiency. In summary, a 10% reduction in CP, coupled with an SP level of approximately 25% to 30%, demonstrated the potential to curtail reactive N emissions through fecal Prevotella enrichment and improve intestinal energy and N utilization efficiency.

3.
Plants (Basel) ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065486

RESUMO

This study examines the potential of 23 plant species, comprising 10 legumes, 9 grasses, and 4 forbs, as cover crops to enhance carbon (C) sequestration and soil nitrogen (N) in vineyards. After a 120-day evaluation period, cover crop biomass was incorporated into the soil, and grapevine seedlings were planted in its place. Among the established cover crops, the C input potential ranged from 0.267 to 1.69 Mg ha-1, and the N input potential ranged from 12.3 to 114 kg ha-1. Legume species exhibited up to threefold greater shoot dry weight (SDW) compared to grass species. Ladino white clover, Dutch white clover, and Clover blend were superior in SDW, total dry weight (TDW), total C content, and total N content. Legumes exhibited slightly higher root dry weight (RDW) than grasses, with the exception of Fall rye leading at 15 g pot-1, followed by Ladino white clover and Dutch white clover at an average of 12 g pot-1. Legumes, particularly clover blend and Alsike clover, displayed high shoot N concentration at an average of 2.95%. Root N concentration in Legumes (Fabaceae) were significantly higher at 1.82% compared to other plant families at 0.89%, while their root C/N ratio was lower at 18.3, contrasting with others at 27.7, resulting in a faster turnover. Biomass production exhibited a negative relationship (R2 = 0.51) with soil residual NO3-. Fall rye, Winfred brassica, and buckwheat had the highest N utilization efficiency (NUtE) values (ava. 121 g g-1). Alsike clover, Ladino white clover, and clover blend showed the highest N uptake efficiency (NUpE) values (ava. 75%). The Readily Available N (RAN) Reliance Index (RANRI) is introduced as a novel indicator for quantifying the extent to which a plant relies on RAN for its total N requirement. The RANRI value represents the percentage of the plant's total N sourced from RAN, ranging from 11% for legumes to 86% for grasses. This implies a substantial influx of nitrogen through a pathway independent of RAN in legumes. Grape shoot N concentration positively correlated with soil NO3- (R2 = 0.31) and cover crop C/N ratio (R2 = 0.17) but negatively correlated with cover crop TDW (R2 = 0.31). This study highlights legume plants as more effective in C and N assimilation during establishment but cautions about potential soil mineral N depletion before reaching their full biological N fixation capacity.

4.
Front Microbiol ; 15: 1354537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659980

RESUMO

As global demand for pork continues to rise, strategies to enhance nitrogen utilization efficiency (NUE) in pig farming have become vital for environmental sustainability. This study explored the relationship between the fecal microbiota, their metabolites, and NUE in crossbreed fattening pigs with a defined family structure. Pigs were kept under standardized conditions and fed in a two-phase feeding regime. In each phase, one fecal sample was collected from each pig. DNA was extracted from a total of 892 fecal samples and subjected to target amplicon sequencing. The results indicated an influence of sire, sampling period (SP), and sex on the fecal microbiota. Streptococcus emerged as a potential biomarker in comparing high and low NUE pigs in SP 1, suggesting a genetic predisposition to NUE regarding the fecal microbiota. All fecal samples were grouped into two enterotype-like clusters named cluster LACTO and cluster CSST. Pigs' affiliation with enterotype-like clusters altered over time and might be sex-dependent. The stable cluster CSST demonstrated the highest NUE despite containing pigs with lower performance characteristics such as average daily gain, dry matter intake, and daily nitrogen retention. This research contributes with valuable insights into the microbiome's role in NUE, paving the way for future strategies to enhance sustainable pig production.

5.
J Anim Breed Genet ; 141(5): 559-570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38526066

RESUMO

Improving the nutrient efficiency in pork production is required to reduce the resource competition between human food and animal feed regarding diet components edible for humans and to minimize emissions relevant to climate or the environment. Thereby, protein utilization efficiency and its equivalent nitrogen utilization efficiency (NUE) play a major role. Breeding for more nitrogen (N) efficient pigs bears a promising strategy to improve such traits, however, directly phenotyping NUE based on N balance data is neither cost-efficient nor straightforward and not applicable for routine evaluations. Blood urea nitrogen (BUN) levels in the pig are suitable to predict the NUE and, therefore, might be an indicator trait for NUE because BUN is a relatively easy-to-measure trait. This study investigated the suitability of NUE as a selection trait in future breeding programs. The relationships to classical growth performance and feed efficiency traits were analysed as well as the relationship to BUN to infer the role of BUN as an indicator trait to improve NUE via breeding. The analyzes were based on a Landrace F1 cross population consisting of 502 individuals who descended from 20 Piétrain sires. All animals were genotyped for 48,525 SNPs. They were phenotyped in two different fattening phases, i.e., FP1 and FP2, during the experiment. Uni- and bivariate analyses were run to estimate variance components and to determine the genetic correlation between different traits or between the same trait measured at different time points. Moderate heritabilities were estimated for all traits, whereby the heritability for NUE was h2 = 0.293 in FP1 and h2 = 0.163 in FP2 and BUN had the by far highest heritability (h2 = 0.415 in FP1 and h2 = 0.460 in FP2). The significant genetic correlation between NUE and BUN showed the potential of BUN to be considered an indicator trait for NUE. This was particularly pronounced when NUE was measured in FP1 (genetic correlations r g = - 0.631 and r g = - 0.688 between NUE and BUN measured in FP1 and FP2, respectively). The genetic correlations of NUE and BUN with important production traits suggest selecting pigs with high growth rates and low BUN levels to breed more efficient pigs in future breeding programs.


Assuntos
Ração Animal , Nitrogênio da Ureia Sanguínea , Nitrogênio , Animais , Nitrogênio/metabolismo , Ração Animal/análise , Suínos/genética , Suínos/crescimento & desenvolvimento , Cruzamento , Fenótipo , Masculino , Polimorfismo de Nucleotídeo Único , Feminino , Genômica , Genótipo
6.
Front Vet Sci ; 11: 1330876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487709

RESUMO

The dietary rumen-degradable starch (RDS) to rumen-degradable protein (RDP) ratio, denoted as the RDS-to-RDP ratio (SPR), has been proven to enhance in vitro rumen fermentation. However, the effects of dietary SPR in vivo remain largely unexplored. This study was conducted to investigate the effect of dietary SPR on lactation performance, nutrient digestibility, rumen fermentation patterns, blood indicators, and nitrogen (N) partitioning in mid-lactating Holstein cows. Seventy-two Holstein dairy cows were randomly assigned to three groups (24 head/group), balanced for (mean ± standard deviation) days in milk (116 ± 21.5), parity (2.1 ± 0.8), milk production (42 ± 2.1 kg/d), and body weight (705 ± 52.5 kg). The cows were fed diets with low (2.1, control), medium (2.3), or high (2.5) SPR, formulated to be isoenergetic, isonitrogenous, and iso-starch. The study consisted of a one-week adaptation phase followed by an eight-week experimental period. The results indicated that the high SPR group had a lower dry matter intake compared to the other groups (p < 0.05). A quadratic increase in milk yield and feed efficiency was observed with increasing dietary SPR (p < 0.05), peaking in the medium SPR group. The medium SPR group exhibited a lower milk somatic cell count and a higher blood total antioxidant capacity compared to other groups (p < 0.05). With increasing dietary SPR, there was a quadratic improvement (p < 0.05) in the total tract apparent digestibility of crude protein, ether extract, starch, neutral detergent fiber, and acid detergent fiber. Although no treatment effect was observed in rumen pH, the rumen total volatile fatty acids concentration and microbial crude protein synthesis increased quadratically (p < 0.05) as dietary SPR increased. The molar proportion of propionate linearly increased (p = 0.01), while branched-chain volatile fatty acids linearly decreased (p = 0.01) with increasing dietary SPR. The low SPR group (control) exhibited higher concentration of milk urea N, rumen ammonia N, and blood urea N than other groups (p < 0.05). Despite a linear decrease (p < 0.05) in the proportion of urinary N to N intake, increasing dietary SPR led to a quadratic increase (p = 0.01) in N utilization efficiency and a quadratic decrease (p < 0.05) in the proportion of fecal N to N intake. In conclusion, optimizing dietary SPR has the potential to enhance lactation performance and N utilization efficiency. Based on our findings, a medium dietary SPR (with SPR = 2.3) is recommended for mid-lactating Holstein dairy cows. Nevertheless, further research on rumen microbial composition and metabolites is warranted to elucidate the underlying mechanisms of the observed effects.

7.
Anim Biosci ; 37(2): 385-395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186255

RESUMO

Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.

8.
Plants (Basel) ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447002

RESUMO

With the increasing importance of energy crops, research on potential energy crops is carried out to identify plant species with high productivity and energy value. The field experiment with the new promising energy crop, Artemisia dubia (wormwood), was executed at the Vezaiciai Branch of the LAMMC. The soil site was naturally acidic Retisol (pH 4.2-4.4). The species was investigated as an energy crop through the evaluation of its biomass productivity and some energetical qualities. According to the three investigation years, DM yield significantly varied depending on the growing season, cutting time and nitrogen rate. The highest average DM yield was observed in 2020-10.58 t ha-1. On average, the DM yield varied from 6.49 t ha-1 (first cutting) to 11.82 t ha-1 (third cutting). The DM yield was positively correlated with stem height and the mass of one stem. Nitrogen use efficiency (NUE) depended on the growing season, cutting time and nitrogen rate. Both N90 and N180 rates should be used for A. dubia fertilization. Energy growing analysis (including direct and indirect expenses) revealed that the highest share of energy expenses are due to indirect energy expenses (particularly nitrogen application). EUE (energy utilization efficiency) tends to decrease as a result of increasing nitrogen fertilization. Overall, A. dubia granules are characterized by a high calorific value.

9.
J Dairy Sci ; 106(7): 4682-4697, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173253

RESUMO

Increasing the nitrogen-utilization efficiency (NUE) of dairy cows by breeding selection would offer advantages from nutritional, environmental, and economic perspectives. Because data collection of NUE phenotypes is not feasible in large cow cohorts, the cow individual milk urea concentration (MU) has been suggested as an indicator trait. Considering the symbiotic interplay between dairy cows and their rumen microbiome, individual MU was thought to be influenced by host genetics and by the rumen microbiome, the latter in turn being partly attributed to host genetics. To enhance our knowledge of MU as an indicator trait for NUE, we aimed to identify differential abundant rumen microbial genera between Holstein cows with divergent genomic breeding values for MU (GBVMU; GBVHMU vs. GBVLMU, where H and L indicate high and low MU phenotypes, respectively). The microbial genera identified were further investigated for their correlations with MU and 7 additional NUE-associated traits in urine, milk, and feces in 358 lactating Holsteins. Statistical analysis of microbial 16S rRNA amplicon sequencing data revealed significantly higher abundances of the ureolytic genus Succinivibrionaceae UCG-002 in GBVLMU cows, whereas GBVHMU animals hosted higher abundances of Clostridia unclassified and Desulfovibrio. The entire discriminating ruminal signature of 24 microbial taxa included a further 3 genera of the Lachnospiraceae family that revealed significant correlations to MU values and were therefore proposed as considerable players in the GBVMU-microbiome-MU axis. The significant correlations of Prevotellaceae UCG-003, Anaerovibrio, Blautia, and Butyrivibrio abundances with MU measurements, milk nitrogen, and N content in feces suggested their contribution to genetically determined N-utilization in Holstein cows. The microbial genera identified might be considered for future breeding programs to enhance NUE in dairy herds.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/química , Lactação/genética , Ureia/análise , RNA Ribossômico 16S/genética , Dieta/veterinária , Nitrogênio/análise , Genômica , Rúmen/química , Ração Animal/análise
10.
Plants (Basel) ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176966

RESUMO

Arbuscular Mycorrhizal Fungi (AMF) constitute a ubiquitous group of soil microorganisms, affecting plant and soil microorganism growth. Various crop management practices can have a significant impact on the AM association. This study investigated the AMF inoculation contribution on growth and productivity of two-rowed barley crop by identifying the underlying mechanisms both in conventional and organic cropping systems. A two-year field trial was set up as a split-plot design with 2 main plots [AMF inoculation: with (AMF+) and without (AMF-)] and five sub-plots (fertilization regimes: untreated, 100% recommended dose of fertilizer in organic and inorganic form, and 60% recommended dose of fertilizer in organic and inorganic form) in three replications. According to the results, AMF+ plants presented higher plant height and leaf area index (LAI), resulting in increased biomass and, as a result, higher seed yield. With regard to the quality traits, including the nitrogen and phosphorus uptake and their utilization indices, the AMF inoculated plants showed higher values. Furthermore, the level of fertilization, particularly in an inorganic form, adversely affected AMF root colonization. Consequently, it was concluded that substitution of inorganic inputs by organic, as well as inputs reduction, when combined with AMF inoculation, can produce excellent results, thus making barley crop cultivation sustainable in Mediterranean climates.

11.
Front Plant Sci ; 14: 1088849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814753

RESUMO

Grazing on cultivated grassland is a green agricultural model. However, in China's Loess Plateau, the type of cultivated grassland suitable for grazing and the amount of nitrogen application is still unclear, which has led to the failure of this model to be widely implemented. In this context, we set up an experiment using three grass planting types, including monoculture of alfalfa (Medicago sativa L.), monoculture of brome (Bromus inermis L.), and mixed planting of the two forages. Under each planting type, there were six management measures: grazing and no nitrogen application (GN1), grazing and 80 kg ha-1 nitrogen application (GN2), grazing and 160 kg ha-1 nitrogen application (GN3), cutting and no nitrogen application (MN1), cutting and 80 kg ha-1 nitrogen application (MN2), and cutting and 160 kg ha-1 nitrogen application (MN3). To explore the impacts of these treatments on pastures, we studied the effects on the yield, quality, and water use efficiency of the three cultivated grasslands. Results showed that alfalfa monoculture and alfalfa-brome mixed sowing grassland resulted in significantly higher hay yield, crude protein yield, water use efficiency (WUE), precipitation use efficiency (PUE), nitrogen use efficiency (NUE), and agronomic efficiency of nitrogen (AEN) as compared to brome monoculture grassland. In addition, the crude protein, ether extract, and crude ash content of alfalfa monoculture and alfalfa-brome mixture were increased significantly while the contents of neutral detergent fiber (NDF) were reduced, thereby increasing the relative feed value (RFV) during the two years. The forage hay yield, crude protein yield, ether extract, crude ash content, RFV, PUE, and WUE were significantly higher with GN1, GN2, and GN3 treatments than that with MN1 treatment. In contrast, the NDF and acid detergent fiber (ADF) content was significantly lower than the MN1 treatment. Furthermore, the fresh forage yield, crude protein yield, PUE, and WUE of GN3 treatment were significantly higher than that of GN1 and GN2 treatments in both years, while the NUE and AEN were significantly higher in GN2 and GN3 treatments than that of MN3 treatment. Based on these results, alfalfa-brome mixed cropping with the application of 160 kg ha-1 nitrogen under grazing conditions is an appropriate management practice for improving the forage yield, quality, and water- and nitrogen utilization efficiency of cultivated grassland in the Loess Plateau of China. This integrated management model is applicable to the cultivation and utilization of mixed grassland on nutrient-poor land in the Loess Plateau.

12.
Huan Jing Ke Xue ; 44(1): 463-472, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635834

RESUMO

The optimization of annual straw management can improve the yield, income, and carbon and nitrogen efficiency of wheat-maize double cropping systems. Based on a long-term positioning trial started in 2012, five straw management methods were considered, C100 (100% return), C75 (75% return+25% harvest), C50 (50% return+50% harvest), C25 (25% return+75% harvest), and C0 (100% harvest). We analyzed the effects of farmland carbon and nitrogen inputs and their ratios on crop yield, carbon and nitrogen use efficiency, and economic benefits in wheat and maize anniversaries with different straw managements. The results showed that: ① the amount of straw returning to the field resulted in a significant difference in carbon and nitrogen input. The annual carbon and nitrogen inputs from crop residues decreased by 1.76 t·hm-2 and 34.28 kg·hm-2, respectively, with a 25% reduction in straw returning. The C/N ratios under the C100-C0 treatment were 18.62, 17.03, 15.64, 12.54, and 9.61, respectively. ② Grain yield first increased and then decreased with the decrease in the C/N input ratio, and the effect of straw management on wheat yield was greater than that on maize. Compared with that under C100 and C0, the average grain yield of wheat and maize under the C50 treatment increased by 13.34%-13.67% and 16.10%-17.71%, respectively, and the total grain yield of wheat and maize increased by 14.98% and 15.68%. ③ The annual grain yield and carbon agronomy efficiency were the best with the C/N input ratio of 15.64 (in the C50 treatment), which were 15.71% and 0.29 kg·kg-1, respectively. The carbon production efficiency continued to increase with the decrease in the C/N input ratio, and there was a significant negative correlation between them. The nitrogen production efficiency increased first and then decreased with the decrease in the C/N input ratio. The nitrogen production efficiency of the C50 treatment was the highest (0.64 kg·kg-1), which was significantly higher than that of C100 by 32.63%. ④ The C50 treatment had the highest economic income and net income, which were 46200 yuan·hm-2 and 33400 yuan·hm-2, respectively. Compared with that of C100, the economic income of grain and straw feed increased by 5600 yuan·hm-2 and 3200 yuan·hm-2, respectively. In conclusion, the optimal C/N input ratio can be achieved by optimized straw management; 50% straw returning and 50% harvest in a wheat-maize double-cropping intensive production system can promote carbon agricultural efficiency and nitrogen production efficiency and obtain the maximum grain yield and economic benefits.


Assuntos
Carbono , Solo , Carbono/análise , Solo/química , Zea mays , Triticum , Nitrogênio , Fertilizantes , Agricultura/métodos , Grão Comestível/química , China
13.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886923

RESUMO

Excessive input of nitrogen fertilizer not only causes a great waste of resources but brings about a series of ecological and environmental problems. Although Small Auxin Up-regulated RNAs (SAURs) participate in diverse biological processes, the function of SAURs in the nitrogen starvation response has not been well-studied. Here, we identified 308 TaSAURs in wheat and divided them into 10 subfamilies. The promoter regions of most TaSAURs contain hormone responsive elements, and their expression levels change under the treatment of different hormones, such as IAA, MeJA, and ABA. Interestingly, overexpression of one of the TaSAUR family members, a nitrogen starvation responsive gene, TaSAUR66-5B, can promote the growth of Arabidopsis and wheat roots. In addition, overexpression of TaSAUR66-5B in Arabidopsis up-regulates the expression levels of auxin biosynthesis related genes, suggesting that overexpression TaSAUR66-5B may promote root growth by increasing the biosynthesis of auxin. Furthermore, overexpression of TaSAUR66-5B in wheat can increase the biomass and grain yields of transgenic plants, as well as the nitrogen concentration and accumulation of both shoots and grains, especially under low nitrogen conditions. This study provides important genomic information of the TaSAUR gene family and lays a foundation for elucidating the functions of TaSAURs in improving nitrogen utilization efficiency in wheat.


Assuntos
Arabidopsis , Triticum , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
14.
Sci Total Environ ; 838(Pt 4): 156528, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688244

RESUMO

The 15N natural abundance is an effective indicator of nitrogen dynamics in plants. The impact of different irrigation regimes as a function of varied soil clay contents on stable nitrogen isotope abundance (δ15N) in rice remains unknown. Therefore, the response of δ15N and nitrogen utilization efficiency (NUE) of rice to different combinations of alternate wetting and drying irrigation (AWD) and clay contents were investigated. The study included three AWD regimes, viz. I100, (100 % saturation, 30 mm flooded), I90 (90 % saturation, 30 mm flooded) and I70 (70 % saturation, 30 mm flooded), and three soil clay content treatments, viz. 40 % (S40), 50 % (S50), and 60 % (S60) clay content. Compared with I100, I90 and I70 with high clay content (S60) significantly increased the crack volumes and N leaching losses and reduced the total N accumulation and different forms of NUE of rice plants. The values of δ15N in above-ground organs and soil were greatly increased by I90 and I70 irrigation regimes compared to I100. An increasing trend of organs δ15N from root to shoot was found for all three irrigation regimes. Significant negative relationships were found between (i) N partial factor productivity (PFP) and grain 15N, (ii) PFP and leaf 15N, and (iii) N harvest index (NHI) and leaf 15N. These significant negative relationships might contribute to the increased N losses and changed N allocation under AWD with high clay contents. Hence, it is suggested that cracks should be taken into consideration in rice cultivation. Moreover, δ15N may serve as an effective indicator of NUE in rice grown under AWD irrigation with high clay contents as well as an indirect indicator for assessing the N loss in agro-ecosystems.


Assuntos
Oryza , Solo , Irrigação Agrícola , Argila , Ecossistema , Nitrogênio , Oryza/fisiologia , Água
15.
Front Microbiol ; 13: 815225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369507

RESUMO

High nitrogen utilization efficiency (NUE) is important for increasing milk protein production and decreasing the feed nitrogen cost and nitrogen emission to the environment. Currently, there is a limited whole picture of the relationship between ruminal bacteriome and the NUE of dairy cows, even though some information has been revealed about the bacteriome and milk or milk protein production of dairy cows. The purpose of this study was to compare the rumen bacterial community in dairy cows with different nitrogen utilization efficiency under the same diet. The natural abundance of 15N between the animal proteins and diet (Δ15N) was used as a simple, non-invasive, and accurate biomarker for NUE in ruminants to mark the individual variation. Dairy cows with high NUE (HE_HP, n = 7), medium NUE (ME_MP, n = 7), and low NUE (LE_LP, n = 7) were selected from 284 Holstein dairy cows with the same diet. Measurement of the rumen fermentation indices showed that the proportion of propionate was higher in HE_HP cows and ME_MP cows than in LE_LP cows (P < 0.05). The diversity of rumen bacterial community was higher in LE_LP cows than in ME_MP cows and HE_HP cows by 16S rRNA sequencing analysis (P < 0.05). Moreover, at the genus level, the relative abundances of Succinivibrionaceae_UCG_001, uncultured_Selenomonadaceae, and Acidaminococcus were higher in HE_HP cows than in LE_LP cows (P < 0.05). Interestingly, we found that these bacteria were positively correlated with milk protein yield and negatively correlated with Δ15N (P < 0.05). However, Clostridia_UCG_014, Saccharofermentans, Bacilli_RF39, and Desulfovibrio were lower in HE_HP cows and ME_MP cows than in LE_LP cows (P < 0.05), which were negatively correlated with milk protein yield and positively correlated with Δ15N (P < 0.05). In conclusion, the study showed that the diversity and relative abundances of rumen bacteria differed among different NUE cows, indicating that rumen bacteriome contributes to nitrogen metabolism in dairy cows.

16.
Chemosphere ; 286(Pt 1): 131594, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346321

RESUMO

The situation of imbalance application of nitrogenous fertilizers in maize production is a serious issue in China, and excessive nitrogen (N) application is hazardous to sustainable agricultural production and environment. In this experiment, two biochar levels (C0: 0, C1: 2 %), three different N rates (N1: 50, N2: 100, and N3: 200 mg kg-1), and two fertilization methods (T: traditional N fertilizer application mode and D: deep N fertilizer placement mode) were set up to study the response of different treatments on maize yield, N uptake, and N use efficiency. Herein, we found that fresh and dry biomasses were increased by 292 % and 283 % under C1N3 treatment with the deep application of N fertilizer compared to the control treatment (without nitrogen fertilizers and biochar). According to structural equation modeling (SEM), soil physical and chemical properties, N component and C component in different soil layers were associated with biochar and N fertilizer treatment, especially at 20-40 depth. The combination of N fertilizer and biochar application promoted the effects of biochar on the improving NUE of plants. The biochar alleviated the loss of soil nitrogen (from 52.00 to 25.94 %) under traditional N fertilizer application. Overall, excessive input of N fertilizer not only promotes the growth of crops but also causes a waste of resources and environmental pollution. We suggest that combined application of biochar and N fertilizer could significantly reduce N loss, and improve root growth and N uptake, resulting in improving NUE by improving soil environment (pH, SOM, EC) and adjusting soil C/N component.


Assuntos
Fertilizantes , Solo , Agricultura , Carvão Vegetal , Fertilizantes/análise , Nitrogênio/análise
17.
Saudi J Biol Sci ; 28(6): 3578-3584, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121901

RESUMO

Individual effects of application of nitrogen (N) and plant densities (PD) were reported in various studies; however an interactive effect of N and PD in cotton was not studied. To explore the benefits of interactive effects of N fertilizer and PD to increase the quality of cotton. This study was carried out in randomized complete block design (RCBD) with split plot arrangement. In split plot arrangement, main plot was consisted of N application rate and in sub plots different PD were done. There were two nitrogen levels; low N level (F1) 120 kg ha-1 and high N level (F2) 180 kg ha-1 and three planting densities; 8 plants m-2 as low density (LD), 10 plants m-2 as medium density (MD) and 12 plants m-2 as high density (HD). In this study we observed the interactive effect of N application levels and PD on cotton photosynthetic and agronomic traits of various stages of development. Results showed that cotton growth and N contents was varied among treatments on different development stages. Plant biomass production, photosynthetic rate (Pn), intercellular CO2 (Ci), water use efficiency (WUE) and N contents were unaffected at the seedling stage by N application rate and PD, however, the highest Pn, Ci and N contents was at squaring stage followed by blooming stage. Higher seed cotton yield and lint yield were obtained F1 with HD, and F2 with MD yielded the highest N contents and cotton yield among treatments. We found that the squaring stage was more critical, followed by the blooming stage when considering N rate and PD.

19.
Plants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923376

RESUMO

Farming of barley and chickpea is nitrogen (N) fertilizer dependent. Using strategies that increase the nitrogen use efficiency (NUE) and its components, nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE) would reduce the N fertilizer application in the soil and its adverse environmental effects. We evaluated the effects of three different strains of diazotroph Klebsiella (K.p. SSN1, K.q. SGM81, and K.o. M5a1) to understand the role of biological nitrogen fixation (BNF) and bacterial indole-3-acetic acid (IAA) on NUE of the plants. A field study revealed that K.p. SSN1 results in profound increment of root surface area by eightfold and threefold compared to uninoculated (control) in barley and chickpea, respectively. We measured significant increase in the plant tissue nitrogen, chlorophyll content, protein content, nitrate reductase activity, and nitrate concentration in the inoculated plants (p ≤ 0.05). Treated barley and chickpea exhibited higher NUE and the components compared to the control plants (K.p. SSN1 ≥ K.q. SGM81> K.o. M5a1). Specifically, K.q. SGM81 treatment in barley increased NUpE by 72%, while in chickpea, K.p. SSN1 increased it by 187%. The substantial improvement in the NUpE and NUE by the auxin producers K.p. SSN1 and K.q. SGM81 compared with non-auxin producer K.o. M5a1 was accompanied by an augmented root architecture suggesting larger contribution of IAA over marginal contribution of BNF in nitrogen acquisition from the soil.

20.
Poult Sci ; 99(12): 6848-6858, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248600

RESUMO

Reducing dietary CP for broiler chickens below a certain threshold results in decreased growth, even when the supply of essential amino acids and glycine equivalent (Glyequi) is adequate, probably because other nonessential amino acids (neAA) are growth-limiting. Nonprotein nitrogen (NPN) might be used for the synthesis of neAA. Therefore, the effects of specific neAA and ammonium chloride (NH4Cl) supplementation on the growth and N-excretion characteristics of broiler chickens were investigated. Nine male Ross 308 broiler chickens were kept in each of 81 metabolism units from day 7 to 21 and received 1 of 9 diets in 9 replicates in a one-factorial arrangement of treatments. Two diets with different neAA concentrations, except for Glyequi, were mixed resulting in CP levels of 180 (CP180) and 160 (CP160) g/kg. In six other diets, CP160 was supplemented with either l-Ala, l-Pro, l-Asp, a mix of l-Asp and l-Asn·H2O, l-Glu, or a mix of l-Glu and l-Gln to achieve concentrations of the respective neAA as formulated in CP180. In a further diet, NH4Cl was added to CP160 to achieve the CP concentration of CP180. The ADG and gain:feed ratio (G:F) from day 7 to 21 were highest at CP180. Reduced neAA concentrations in CP160 decreased ADG and G:F. Supplementation of Asp+Asn, Glu, and Glu+Gln to CP160 increased ADG and G:F, but not to the level found for CP180. Compared with CP160, addition of Asp increased G:F but not ADG. Supplementation of Asp+Asn caused higher ADG and G:F than supplementation of Asp alone. The N-utilization efficiency was highest at CP160 and at CP160 supplemented with Ala, Pro, and Glu. Lower N-utilization efficiency was found at CP180 than at CP160, without and with supplemented neAA. The treatment containing NH4Cl presented the lowest ADG, G:F, and N-utilization efficiency. These results showed that individual supplementation of Asp+Asn, Glu, and Glu+Gln partly compensates for the growth-reducing effects of very low CP diets. Supplementation of NH4Cl as NPN source is not suitable for broiler chickens.


Assuntos
Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta com Restrição de Proteínas , Suplementos Nutricionais , Nitrogênio , Aminoácidos/farmacologia , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Dieta com Restrição de Proteínas/veterinária , Masculino , Nitrogênio/metabolismo , Nitrogênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA