Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2407061, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083301

RESUMO

They have achieved a significant breakthrough in the preparation and development of two-dimensional nanocomposites with P-N heterojunction interfaces as efficient cathode catalysts for electrochemical hydrogen evolution reaction (HER) and iodide oxidation reaction (IOR). P-type acid-doped polyaniline (PANI) and N-type exfoliated molybdenum disulfide (MoS2) nanosheets can form structurally stable composites due to formation of P-N heterojunction structures at their interfaces. These P-N heterojunctions facilitate charge transfer from PANI to MoS2 structures and thus significantly enhance the catalytic efficiency of MoS2 in the HER and IOR. Herein, by combining efficient sodium-functionalized chitosan-assisted MoS2 exfoliation, electropolymerization of PANI on nickel foam (NF) substrate, and electrochemical activation, controllable and scalable Na-Chitosan/MoS2/PANI/NF electrodes are successfully constructed as non-noble metal-based electrochemical catalysts. Compared to a commercial platinum/carbon (Pt/C) catalyst, the Na-Chitosan/MoS2/PANI/NF electrode exhibits significantly lower resistance and overpotential, a similar Tafel slope, and excellent catalytic stability at high current densities, demonstrating excellent catalytic performance in the HER under acidic conditions. More importantly, results obtained from proton exchange membrane fuel cell devices confirm the Na-Chitosan/MoS2/PANI/NF electrode exhibits a low turn-on voltage, high current density, and stable operation at 2 V. Thus, this system holds potential as a replacement for Pt/C with feasibility for applications in energy-related fields.

2.
J Colloid Interface Sci ; 676: 52-60, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018810

RESUMO

The seawater electrolysis technology powered by renewable energy is recognized as the promising "green hydrogen" production method to solve serious energy and environmental problems. The lack of low-cost and ampere-level current OER (oxygen evolution reaction) and HER (hydrogen evolution reaction) catalysis limits their industrial application. In this work, a unique tri-metal (Co/Fe/Ni) layered double hydroxide hollow array anode catalyst (CFN-LDH/NF) and the CoP/FeNi2P heterojunction hollow array cathode are successfully prepared via one in-situ growth of Co-MOF on nickel foam (Co-MOF/NF) precursor, which exhibits excellent catalytic performance. The η1000 values of 352 and 392 mV are achieved for CFN-LDH/NF (OER catalyst) in 1.0 M KOH and alkaline seawater solution, respectively. The CFNP/NF with a low overpotential of 281 mV is required to reach 1000 mA cm-2 current density for HER in 1.0 M KOH solution, while the η1000 in alkaline seawater solution is 312 mV. The CFN-LDH/NF||CFNP/NF electrolyzer exhibits excellent long-term durability over 100 h, achieving current density of 500 mA cm-2 at 1.825 V in 1.0 M KOH solution. The construction of hollow tri-metal LDH and phosphides heterostructures may open a new and relatively unexplored path for fabricating high performance seawater splitting catalysis.

3.
ACS Nano ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083439

RESUMO

Manipulating the local coordination environment of central metal atoms in single-atom catalysts (SACs) is a powerful strategy to exploit efficient SACs with optimal electronic structures for various applications. Herein, Co-SACs featured by Co single atoms with coordinating S atoms in the second shell dispersed in a nitrogen-doped carbon matrix have been developed toward the selective hydrogenation of halo-nitrobenzene. The location of the S atom in the model Co-SAC is verified through synchrotron-based X-ray absorption spectroscopy and theoretical calculations. The resultant Co-SACs containing second-coordination shell S atoms demonstrate excellent activity and outstanding durability for selective hydrogenation, superior to most precious metal-based catalysts. In situ characterizations and theoretical results verify that high activity and selectivity are attributed to the advantageous formation of the Co-O bond between p-chloronitrobenzene and Co atom at Co1N4-S moieties and the lower free energy and energy barriers of the reaction. Our findings unveil the correlation between the performance and second-shell coordination atom of SACs.

4.
Adv Mater ; : e2405852, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021291

RESUMO

The utilization of seawater for hydrogen production via water splitting is increasingly recognized as a promising avenue for the future. The key dilemma for seawater electrolysis is the incompatibility of superior hydrogen- and oxygen-evolving activities at ampere-scale current densities for both cathodic and anodic catalysts, thus leading to large electric power consumption of overall seawater splitting. Here, in situ construction of Fe4N/Co3N/MoO2 heterostructure arrays anchoring on metallic nickel nitride surface with multilevel collaborative catalytic interfaces and abundant multifunctional metal sites is reported, which serves as a robust bifunctional catalyst for alkaline freshwater/seawater splitting at ampere-level current density. Operando Raman and X-ray photoelectron spectroscopic studies combined with density functional theory calculations corroborate that Mo and Co/Fe sites situated on the Fe4N/Co3N/MoO2 multilevel interfaces optimize the reaction pathway and coordination environment to enhance water adsorption/dissociation, hydrogen adsorption, and oxygen-containing intermediate adsorption, thus cooperatively expediting hydrogen/oxygen evolution reactions in base. Inspiringly, this electrocatalyst can substantially ameliorate overall freshwater/seawater splitting at 1000 mA cm-2 with low cell voltages of 1.65/1.69 V, along with superb long-term stability at 500-1500 mA cm-2 for over 200 h, outperforming nearly all the ever-reported non-noble electrocatalysts for freshwater/seawater electrolysis. This work offers a viable approach to design high-performance bifunctional catalysts for seawater splitting.

5.
Angew Chem Int Ed Engl ; : e202408508, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030794

RESUMO

Transition metal sulfides, particularly heterostructures, represent a promising class of electrocatalysts for two electron oxygen reduction (2e- ORR), however, understanding the dynamic structural evolution of these catalysts during alkaline ORR remains relatively unexplored. Herein, NiS2/In2.77S4 heterostructure was synthesized as a precatalyst and through a series of comprehensive ex-situ and in-situ characterizations, including X-ray absorption spectroscopy, Raman spectroscopy, transient photo-induced voltage measurements, electron energy loss spectroscopy, and spherical aberration-corrected electron microscopy, it was revealed that nickel/indium (oxy)hydroxides (NiOOH/In(OH)3) could be evolved from the initial NiS2/In2.77S4 via both electrochemical and chemical-driven methods. The electrochemical-driven phase featured abundant bridging oxygen-deficient [NiO6]-[InO6] units at the interfaces of NiOOH/In(OH)3, facilitating a synergistic effect between active Ni and In sites, thus enabling an enhanced alkaline 2e- ORR capability than that of chemical-driven process. Remarkably, electrochemically induced NiOOH/In(OH)3 exhibited exceptional performance, achieving H2O2 selectivity of >90% across the wide potential window (up to 0.4 V) with a peak selectivity of >99%. Notably, within the flow cell, a current density exceeding 200 mA cm-2 was sustained for over 20 h, together with an impressive Faradaic efficiency of approximately 90% and a hydrogen peroxide production rate surpassing 4 mol g-1 h-1.

6.
ChemSusChem ; : e202400513, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772862

RESUMO

The limited yield of H2 production has posed a significant challenge in contemporary research. To address this issue, researchers have turned to the application of surface plasmon resonance (SPR) materials in photocatalytic H2 generation. SPR, arising from collective electron oscillations, enhances light absorption and facilitates efficient separation and transfer of electron-hole pairs in semiconductor systems, thereby boosting photocatalytic H2 production efficiency. However, existing reviews predominantly focus on SPR noble metals, neglecting non-noble metals and SPR semiconductors. In this review, we begin by elucidating five different SPR mechanisms, covering hot electron injection, electric field enhancement, light scattering, plasmon-induced resonant energy transfer, and photo-thermionic effect, by which SPR enhances photocatalytic activity. Subsequently, a comprehensive overview follows, detailing the application of SPR materials-metals, non-noble metals, and SPR semiconductors-in photocatalytic H2 production. Additionally, a personal perspective is offered on developing highly efficient SPR-based photocatalysis systems for solar-to-H2 conversion in the future. This review aims to guide the development of next-gen SPR-based materials for advancing solar-to-fuel conversion.

7.
Materials (Basel) ; 17(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591377

RESUMO

The determination of the electrochemically active surface area (ECSA) of a catalyst layer (CL) of a non-precious metal catalyst is of fundamental importance in optimizing the design of a durable CL for anion exchange membrane (AEM) water electrolysis, but has yet to be developed. Traditional double layer capacitance (Cdl), measured by cyclic voltammetry (CV), is not suitable for the estimation of the ECSA due to the nonconductive nature of Ni-based oxides and hydroxides in the non-Faradaic region. This paper analyses the applicability of electrochemical impedance spectroscopy (EIS) compared to CV in determining capacitances for the estimation of the ECSA of AEM-based CLs in an aqueous KOH electrolyte solution. A porous electrode transmission line (TML) model was employed to obtain the capacitance-voltage dependence from 1.0 V to 1.5 V at 20 mV intervals, covering both non-Faradic and Faradic regions. This allows for the identification of the contribution of a NiFe-layered double hydroxide (LDH) catalyst and supports in a CL, to capacitances in both non-Faradic and Faradic regions. A nearly constant double layer capacitance (Qdl) observed in the non-Faradic region represents the interfaces between catalyst supports and electrolytes. The capacitance determined in the Faradic region by EIS experiences a peak capacitance (QF), which represents the maximum achievable ECSA in an AEMCL during reactions. The EIS method was additionally validated in durability testing. An approximate 30% loss of QF was noted while Qdl remained unchanged following an eight-week test at 1 A/cm2 constant current density, implying that QF, determined by EIS, is sensitive to and therefore suitable for assessing the loss of ECSA. This universal method can provide a reasonable estimate of catalyst utilization and enable the monitoring of catalyst degradation in CLs, in particular in liquid alkaline electrolyte water electrolysis systems.

8.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612151

RESUMO

Water splitting is an important way to obtain hydrogen applied in clean energy, which mainly consists of two half-reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, the kinetics of the OER of water splitting, which occurs at the anode, is slow and inefficient, especially in acid. Currently, the main OER catalysts are still based on noble metals, such as Ir and Ru, which are the main active components. Hence, the exploration of new OER catalysts with low cost, high activity, and stability has become a key issue in the research of electrolytic water hydrogen production technology. In this paper, the reaction mechanism of OER in acid was discussed and summarized, and the main methods to improve the activity and stability of non-noble metal OER catalysts were summarized and categorized. Finally, the future prospects of OER catalysts in acid were made to provide a little reference idea for the development of advanced OER catalysts in acid in the future.

9.
ACS Appl Mater Interfaces ; 16(12): 14742-14749, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483824

RESUMO

The sluggish kinetics of the oxygen evolution reaction (OER) always results in a high overpotential at the anode of water electrolysis and an excessive electric energy consumption, which has been a major obstacle for hydrogen production through water electrolysis. In this study, we present a CoNi-LDH/Fe MOF/NF heterostructure catalyst with nanoneedle array morphology for the OER. In 1.0 M KOH solution, the heterostructure catalyst only required overpotentials of 275 and 305 mV to achieve high current densities of 500 and 1000 mA/cm2 for OER, respectively. The catalytic activities are much higher than those of the reference single-component CoNi-LDH/NF and Fe MOF/NF catalysts. The improved catalytic performance of the heterostructure catalyst can be ascribed to the synergistic effect of CoNi-LDH and Fe MOF. In particular, when the anodic OER is replaced with the urea oxidation reaction (UOR), which has a relatively lower thermodynamic equilibrium potential and is expected to reduce the cell voltage, the overpotentials required to achieve the same current densities can be reduced by 80 and 40 mV, respectively. The cell voltage required to drive overall urea splitting (OUS) is only 1.55 V at 100 mA/cm2 in the Pt/C/NF||CoNi-LDH/Fe MOF/NF two-electrode electrolytic cell. This value is 60 mV lower compared with that required for overall water splitting (OWS). Our results indicate that a reasonable construction of a heterostructure catalyst can significantly give rise to higher electrocatalytic performance, and using UOR to replace the anodic OER of the OWS can greatly reduce the electrolytic energy consumption.

10.
ChemSusChem ; 17(9): e202400415, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482550

RESUMO

The development of low-cost and high-efficiency catalysts for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) is still a challenging technology. Herein, ultrafine MoOx-doped Ni nanoparticles (~3.0 nm) were anchored on g-C3N4@glucose-derived nitrogen-doped carbon nanosheets via a phosphate-mediated method. The strong adsorption of phosphate-mediated nitrogen-doped carbon nanosheets (PNCS) for metal ions is a key factor for the preparation of ultrasmall Ni nanoparticles (NPs). Notably, the alkaline environment formed by the reduction of metal ions removes the phosphate from the PNCS surface to generate P-free (P)NCS so that the phosphate does not participate in the subsequent catalytic reaction. The synthesized Ni-MoOx/(P)NCS catalysts exhibited outstanding catalytic properties for the hydrolysis of AB, with a high turnover frequency (TOF) value of up to 85.7 min-1, comparable to the most efficient noble-metal-free catalysts and commercial Pt/C catalyst ever reported for catalytic hydrogen production from AB hydrolysis. The superior performance of Ni-MoOx/(P)NCS can be ascribed to its well-dispersed ultrafine metal NPs, abundant surface basic sites, and electron-rich nickel species induced by strong electronic interactions between Ni-MoOx and (P)NCS. The strategy of combining multiple modification measures adopted in this study provides new insights into the development of economical and high-efficiency noble-metal-free catalysts for energy catalysis applications.

11.
Sci Technol Adv Mater ; 25(1): 2301423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357414

RESUMO

Ammonia, as an essential and economical fuel, is a key intermediate for the production of innumerable nitrogen-based compounds. Such compounds have found vast applications in the agricultural world, biological world (amino acids, proteins, and DNA), and various other chemical transformations. However, unlike other compounds, the decomposition of ammonia is widely recognized as an important step towards a safe and sustainable environment. Ammonia has been popularly recommended as a viable candidate for chemical storage because of its high hydrogen content. Although ruthenium (Ru) is considered an excellent catalyst for ammonia oxidation; however, its high cost and low abundance demand the utilization of cheaper, robust, and earth abundant catalyst. The present review article underlines the various ammonia decomposition methods with emphasis on the use of non-noble metals, such as iron, nickel, cobalt, molybdenum, and several other carbides as well as nitride species. In this review, we have highlighted various advances in ammonia decomposition catalysts. The major challenges that persist in designing such catalysts and the future developments in the production of efficient materials for ammonia decomposition are also discussed.


In this dynamic area, ammonia degradation to hydrogen fuel provides a valuable contribution in the carbon neutral economy. Ammonia has been used extensively in several industries and is considered an ideal candidate for hydrogen generation and storage due to its high hydrogen content. Consequently, the ammonia decomposition to yield green hydrogen has become a hot topic in research. Although numerous studies on ammonia decomposition have been conducted over the last few decades, still very few review articles on the most recent advances in this field of catalysis have been published. Through this review, systematic information on the types of decomposition catalysts including both noble (Ru) and non-noble earth abundant metals such as iron, nickel, cobalt, molybdenum, their carbides and nitrides, catalytic routes, as well as the reactivity and mechanism can be comprehended. The literature on newly discovered catalysts, specifically from the last five years, is well documented and explained in this review article. Furthermore, the effect of catalyst supports, their reaction kinetics and mechanistic insights have also been discussed. The challenges and opportunities associated with the decomposition catalysts are comprehensively explicated in the end.


Ammonia decomposition reaction (ADR) is a viable method for hydrogen storage in the form of chemical bonds.Catalysts composed of noble, non-noble metals, amides, imides, carbides, nitrides, and their combinations have been widely explored towards the ADR.Challenges and opportunities in the ammonia oxidation are pointed out.

12.
ACS Nano ; 18(5): 4229-4240, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277276

RESUMO

The development of efficient, stable, and low-cost bifunctional catalysts for the hydrogen evolution/oxidation reaction (HER/HOR) is critical to promote the application of hydrogen gas batteries in large scale energy storage systems. Here we demonstrate a non-noble metal high-entropy alloy grown on Cu foam (NNM-HEA@CF) as a self-supported catalytic electrode for nickel-hydrogen gas (Ni-H2) batteries. Experimental and theoretical calculation results reveal that the NNM-HEA catalyst greatly facilitates the HER/HOR catalytic process through the optimized electronic structures of the active sites. The assembled Ni-H2 battery with NNM-HEA@CF as the anode shows excellent rate capability and exceptional cycling performance of over 1800 h without capacity decay at an areal capacity of 15 mAh cm-2. Furthermore, a scaled-up Ni-H2 battery fabricated with an extended capacity of 0.45 Ah exhibits a high cell-level energy density of ∼109.3 Wh kg-1. Moreover, its estimated cost reaches as low as ∼107.8 $ kWh-1 based on all key components of electrodes, separator and electrolyte, which is reduced by more than 6 times compared to that of the commercial Pt/C-based Ni-H2 battery. This work provides an approach to develop high-efficiency non-noble metal-based bifunctional catalysts for hydrogen batteries in large-scale energy storage applications.

13.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257287

RESUMO

The extensive utilization of fossil fuels has led to a rapid increase in atmospheric CO2 concentration, resulting in various environmental issues. To reduce reliance on fossil fuels and mitigate CO2 emissions, it is important to explore alternative methods of utilizing CO2 and H2 as raw materials to obtain high-value-added chemicals or fuels. One such method is CO2 methanation, which converts CO2 and H2 into methane (CH4), a valuable fuel and raw material for other chemicals. However, CO2 methanation faces challenges in terms of kinetics and thermodynamics. The reaction rate, CO2 conversion, and CH4 yield need to be improved to make the process more efficient. To overcome these challenges, the development of suitable catalysts is essential. Non-noble metal catalysts have gained significant attention due to their high catalytic activity and relatively low cost. In this paper, the thermodynamics and kinetics of the CO2 methanation reaction are discussed. The focus is primarily on reviewing Ni-based, Co-based, and other commonly used catalysts such as Fe-based. The effects of catalyst supports, preparation methods, and promoters on the catalytic performance of the methanation reaction are highlighted. Additionally, the paper summarizes the impact of reaction conditions such as temperature, pressure, space velocity, and H2/CO2 ratio on the catalyst performance. The mechanism of CO2 methanation is also summarized to provide a comprehensive understanding of the process. The objective of this paper is to deepen the understanding of non-noble metal catalysts in CO2 methanation reactions and provide insights for improving catalyst performance. By addressing the limitations of CO2 methanation and exploring the factors influencing catalyst effectiveness, researchers can develop more efficient and cost-effective catalysts for this reaction.

14.
Nano Lett ; 24(3): 852-858, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38051031

RESUMO

Currently, the hydroformylation of short olefins is operated almost exclusively by using Rh catalysts. Considering the high cost and scarcity of rhodium resources, it is important to develop non-noble metal catalysts toward hydroformylation. Herein, we report an efficient cobalt-based catalyst rich in interfacial sites between metallic and oxidized cobalt species for the hydroformylation of short olefin, propene, under a moderate syngas pressure. The catalyst exhibited a high specific activity of 252 mol molCo-1 h-1 in toluene under 2 bar of propene and 40 bar of CO/H2 mixed gas (CO/H2 = 1:1) at 160 °C. According to mechanistic studies, the interface of metallic and oxidized cobalt species promoted the adsorption of CO and propene. Moreover, the interfacial sites lowered the energy barrier for CO* hydrogenation and C-C coupling compared with metallic cobalt.

15.
Nanomaterials (Basel) ; 13(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764608

RESUMO

Ammonia (NH3) plays a significant role in the manufacture of fertilizers, nitrogen-containing chemical production, and hydrogen storage. The electrochemical nitrogen reduction reaction (e-NRR) is an attractive prospect for achieving clean and sustainable NH3 production, under mild conditions driven by renewable energy. The sluggish cleavage of N≡N bonds and poor selectivity of e-NRR are the primary challenges for e-NRR, over the competitive hydrogen evolution reaction (HER). The rational design of e-NRR electrocatalysts is of vital significance and should be based on a thorough understanding of the structure-activity relationship and mechanism. Among the various explored e-NRR catalysts, metal-based electrocatalysts have drawn increasing attention due to their remarkable performances. This review highlighted the recent progress and developments in metal-based electrocatalysts for e-NRR. Different kinds of metal-based electrocatalysts used in NH3 synthesis (including noble-metal-based catalysts, non-noble-metal-based catalysts, and metal compound catalysts) were introduced. The theoretical screening and the experimental practice of rational metal-based electrocatalyst design with different strategies were systematically summarized. Additionally, the structure-function relationship to improve the NH3 yield was evaluated. Finally, current challenges and perspectives of this burgeoning area were provided. The objective of this review is to provide a comprehensive understanding of metal-based e-NRR electrocatalysts with a focus on enhancing their efficiency in the future.

16.
ACS Nano ; 17(17): 17180-17189, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655729

RESUMO

The ethanol oxidation reaction (EOR) is an economical pathway in many electrochemical systems for clean energy, such as ethanol fuel cells and the anodic reaction in hydrogen generation. Noble metals, such as platinum, are benchmark catalysts for EOR owing to their superb electrochemical capability. To improve sustainability and product selectivity, nickel (Ni)-based electrocatalysts are considered promising alternatives to noble-metal EOR. Although Ni-based electrocatalysts are relieved from intermediate poisoning, their performances are largely limited by their relatively high onset potential. Therefore, the EOR usually competes with the oxygen evolution reaction (OER) at working potentials, resulting in a low EOR efficiency. Here, we demonstrate a strategy to modify the surface ligands on ultrathin Ni(OH)2 nanosheets, which substantially improved their catalytic properties for the alkaline EOR. Chemisorbed octadecylamine ligands could create an alcoholophilic layer at the nanosheet surface to promote alcohol diffusion and adsorption, resulting in outstanding EOR activity and selectivity over the OER at higher potential. These non-noble-metal-based 2D electrocatalysts and surface ligand engineering showcase a promising strategy for achieving high-efficiency electrocatalysis of EOR in many practical electrochemical processes.

17.
J Hazard Mater ; 459: 132282, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37591175

RESUMO

Halogenated organic compounds as highly focused emerging contaminants pose a long-lasting threat to human health and the aquatic environment due to their high toxicities and strong anti-biodegradation characteristics. Electrochemical hydrodehalogenation (ECHD) is a promising technology with a low-carbon footprint to remove halogenated organic compounds while suffering from a lack of efficient and robust earth-abundant electrocatalysts. Herein, by integrating two kinds of transition metal dichalcogenides (i.e., MoSe2 nanosheet and Ni3Se2 nanowire) into a conductive 3D porous network nickel foam, we obtained a hierarchical architecture (MoSe2/Ni3Se2@NF) that promises high surface area, fast charge transfer and efficient mass transfer. The interface-confined epitaxial growth of Ni3Se2 nanowires on nickel foam provides abundant sites for the vertical growth of MoSe2 nanosheets, which endows MoSe2 with maximal accessible active edge sites to participate in the ECHD process. Benefiting from such a hierarchical 3D porous configuration, trichloroacetic acid (5 mg/L) was removed over 95% by MoSe2/Ni3Se2@NF at - 1.2 V vs. SCE after 1 h, which dramatically outperformed that for NF (20%) and Ni3Se2@NF (53.2%). The major contributor to such boosted performance is the adsorbed atomic hydrogen (*H) generated during water splitting via suppressing hydrogen-hydrogen dimerization, as evidenced by radical quenching experiments and electron paramagnetic resonance spectroscopy. This study offers appealing opportunities for tailoring the catalytic performance of noble-metal-free heterogeneous catalysts for various applications that require noble-metal catalysts.

18.
ACS Sens ; 8(9): 3417-3427, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606544

RESUMO

This study introduces a promising technique to enhance the sensitivity of p-type semiconductors in gas-sensing applications. By utilizing a glycerate-templated synthesis approach, a unique hierarchical W-doped Co3O4 yolk-shell sphere (YSS)-based sensor was developed, exhibiting exceptional sensitivity toward acetone gas. The synthesized YSSs feature a yolk-shell structure with a diameter of approximately 500 nm and a large surface area of 117.46 m2/g, which allows for efficient gas interaction and high sensitivity toward acetone gas. Furthermore, the incorporation of tungsten (W), a non-noble metal, as a dopant significantly enhances the surface activity of Co3O4, leading to a remarkably high response of 16.5 toward 5 ppm acetone, which is substantially higher than that of the pure Co3O4 YSS (2.9). The W-doped Co3O4 YSS also exhibits excellent selectivity to other interfering gases and the ability to detect ultralow concentrations of acetone as low as 10 ppb. The proposed non-noble metal doping strategy presents a practical solution for enhancing the sensitivity and selectivity of p-type semiconductor-based gas sensors. This approach holds great potential for practical gas-sensing applications due to their affordability and abundance, making them a cost-effective and versatile alternative to noble metal-catalyzed sensors.


Assuntos
Acetona , Tungstênio , Cobalto , Citoplasma , Gases
19.
Angew Chem Int Ed Engl ; 62(40): e202309854, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37578684

RESUMO

In the pursuit of long-term stability for oxygen evolution reaction (OER) in seawater, retaining the intrinsic catalytic activity is essential but has remained challenging. Herein, we developed a Nix Cry O electrocatalyst that manifested exceptional OER stability in alkaline condition while improving the activity over time by dynamic self-restructuring. In 1 M KOH, Nix Cry O required overpotentials of only 270 and 320 mV to achieve current densities of 100 and 500 mA cm-2 , respectively, with excellent long-term stability exceeding 475 h at 100 mA cm-2 and 280 h at 500 mA cm-2 . The combination of electrochemical measurements and in situ studies revealed that leaching and redistribution of Cr during the prolonged electrolysis resulted in increased electrochemically active surface area. This eventually enhanced the catalyst porosity and improved OER activity. Nix Cry O was further applied in real seawater from the Red Sea (without purification, 1 M KOH added), envisaging that the dynamically evolving porosity can offset the adverse active site-blocking effect posed by the seawater impurities. Remarkably, Nix Cry O exhibited stable operation for 2000, 275 and 100 h in seawater at 10, 100 and 500 mA cm-2 , respectively. The proposed catalyst and the mechanistic insights represented a step towards realization of non-noble metal-based direct seawater splitting.

20.
ChemSusChem ; 16(18): e202300373, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37258454

RESUMO

Effective cleavage and functionalization of C(OH)-C bonds is of great importance for the production of value-added chemicals from renewable biomass resources such as carbohydrates, lignin and their derivatives. The efficiency and selectivity of oxidative cleavage of C(OH)-C bonds are hindered by their inert nature and various side reactions associated with the hydroxyl group. The oxidative conversion of secondary alcohols to produce aldehydes is particularly challenging because the generated aldehydes tend to be over-oxidized to acids or the other side products. Noble-metal based catalysts are necessary to get satisfactory aldehyde yields. Herein, for the first time, the efficient aerobic oxidative conversion of secondary aromatic alcohols into aromatic aldehydes is reported using non-noble metal catalysts and environmentally benign oxygen, without any additional base. It was found that CuI -1,10-phenanthroline (Cu-phen) complex showed outstanding performance for the reactions. The C(OH)-C bonds of a diverse array of aromatic secondary alcohols were effectively cleaved and functionalized, selectively affording aldehydes with excellent yields. Detailed mechanism study revealed a radical mediated pathway for the oxidative reaction. We believe that the findings in this work will lead to many explorations in non-noble metal catalyzed oxidative reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA