RESUMO
BACKGROUND: Common marmosets (Callithrix jacchus) are increasingly recognized as valuable nonhuman primates (NHPs) for biomedical research due to their small size and short reproductive cycle and lifespan relative to other NHP species. Maximizing the utility of captive research marmosets, including genetically manipulated animals, will require the use of assisted reproductive techniques (ART) including manipulation, storage, and sharing of marmoset sperm. Here, we identify characteristics of high-quality semen samples and validate a simple method for selecting high-quality sperm. METHODS: Computer-assisted sperm analysis (CASA) was used to evaluate sperm quality in semen samples collected from 44 marmosets and assessed the use of the swim-up method for the selection of high-quality sperm was also tested in half the samples as a potential means to optimize in vitro fertilization or intrauterine insemination. RESULTS: For each reference parameter, samples at or below the 5th percentile were categorized as abnormal sperm, while those above the 5th percentile were considered to be normal. Among normal samples, those at or above the 50th percentile were categorized as high-quality. High-quality semen samples exhibited the following characteristics: semen volume ≥ 30 µL; sperm count ≥ 107/ejaculate; total motility ≥ 35%; and normal morphology ≥ 5%. Sperm isolated by swim-up exhibited superior sperm progressive motility (19.7% ± 4.5 vs. 5.6% ± 2.1; P = 0.01) and normal morphology (13.1 ± 1.59 vs. 7.65 ± 1.1; P < 0.001) compared with unselected sperm. CONCLUSION: This study defines robust, statistically supported reference values for evaluating marmoset semen samples to assist with the identification of optimal sperm donors and the selection of high-quality sperm samples for assisted reproduction. Ultimately, these reference values combined with a validated selection method will contribute to consistent standards for the international sharing of genetically diverse and/or gene-edited marmoset sperm for research and reproduction.
RESUMO
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacts multiple anatomical sites. Whether this is due to the virus itself or is a secondary effect caused by the influx and activation of immune cells is not known. Positron emission tomography (PET) with immunoglobulins can provide insights into which sites and cells are activated in a living animal. Our aim is to use two nanobodies as tools to monitor (1) the distribution of antigen presenting cells (APC) by virtue of their Mafa-DR expression profile, (2) virus-infected cells and viral particles using a nanobody against the SARS-CoV-2 spike protein. Two [89Zr]-labeled nanobodies that target the SARS-CoV-2 spike protein and major histocompatability complex (MHC) class II antigens (Mafa-DR), respectively, are used to monitor their distribution during an experimental SARS-CoV-2 infection in a nonhuman primate model. Scans are obtained before infection and on Day 3 and 10 post infection (pi) in two macaques each. The [89Zr]anti-SARS-CoV-2 spike nanobody localized to SARS-CoV-2-associated lung lesions and the nasal mucosa, while the [89Zr]anti-human leukocyte antigen (HLA)-DR nanobody was predominantly found in non-affected lung tissue after infection. We also detected, pi, upregulation of the Mafa-DR signal, indicative of recruitment of professional APCs, in the superior sagittal sinus. [89Zr]-labeled nanobodies show recruitment of macrophages/monocytes in non-lesional lung tissue in cynomolgus macaques after experimental infection with SARS-CoV-2, as well as accumulation of the spike protein in both lung lesions and the nasal mucosa during infection. These results show the possibility of in vivo monitoring the quality and quantity of immune responses during the initial stages of an infection.
Assuntos
COVID-19 , Tomografia por Emissão de Pósitrons , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/imunologia , COVID-19/diagnóstico por imagem , Anticorpos de Domínio Único/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Modelos Animais de Doenças , Células Apresentadoras de Antígenos/imunologia , Humanos , Macaca fascicularisRESUMO
Sensory systems mediate our social interactions, food intake, livelihoods, and other essential daily functions. Age-related decline and disease in sensory systems pose a significant challenge to healthy aging. Research on sensory decline in humans is informative but can often be difficult, subject to sampling bias, and influenced by environmental variation. Study of animal models, including mice, rats, rabbits, pigs, cats, dogs, and non-human primates, plays a complementary role in biomedical research, offering advantages such as controlled conditions and shorter lifespans for longitudinal study. Various species offer different advantages and limitations but have provided key insights in geroscience research. Here we review research on age-related decline and disease in vision, hearing, olfaction, taste, and touch. For each sense, we provide an epidemiological overview of impairment in humans, describing the physiological processes and diseases for each sense. We then discuss contributions made by research on animal models and ideas for future research. We additionally highlight the need for integrative, multimodal research across the senses as well as across disciplines. Long-term studies spanning multiple generations, including on species with longer life spans, are also highly valuable. Overall, integrative studies of appropriate animal models have high translational potential for clinical applications, the development of novel diagnostics, therapies, and medical interventions and future research will continue to close gaps in these areas. Research on animal models to improve understanding of the biology of the aging senses and improve the healthspan and additional research on sensory systems hold special promise for new breakthroughs.
RESUMO
Reinforcement learning (RL), particularly in primates, is often driven by symbolic outcomes. However, it is usually studied with primary reinforcers. To examine the neural mechanisms underlying learning from symbolic outcomes, we trained monkeys on a task in which they learned to choose options that led to gains of tokens and avoid choosing options that led to losses of tokens. We then recorded simultaneously from the orbitofrontal cortex (OFC), ventral striatum (VS), amygdala (AMY), and mediodorsal thalamus (MDt). We found that the OFC played a dominant role in coding token outcomes and token prediction errors. The other areas contributed complementary functions, with the VS coding appetitive outcomes and the AMY coding the salience of outcomes. The MDt coded actions and relayed information about tokens between the OFC and VS. Thus, the OFC leads the processing of symbolic RL in the ventral frontostriatal circuitry.
Assuntos
Exposição à Radiação , Lesões por Radiação , Humanos , Lesões por Radiação/prevenção & controle , Lesões por Radiação/tratamento farmacológico , Exposição à Radiação/efeitos adversos , Exposição à Radiação/prevenção & controle , Contramedidas Médicas , Protetores contra Radiação/uso terapêutico , Desenvolvimento de Medicamentos , Saúde Global , AnimaisRESUMO
INTRODUCTION: Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED: In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION: A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Assuntos
Antivirais , Modelos Animais de Doenças , Descoberta de Drogas , Infecções por Filoviridae , Filoviridae , Primatas , Vacinas Virais , Animais , Humanos , Infecções por Filoviridae/prevenção & controle , Filoviridae/imunologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia , Vacinas Virais/administração & dosagem , Antivirais/farmacologia , Descoberta de Drogas/métodos , Simulação por Computador , Alternativas aos Testes com Animais/métodosRESUMO
Naltrexone, an opioid antagonist that blocks the reinforcing properties of opioid agonists, is often prescribed to preclude relapse to opioid use disorder (OUD) following detoxification. However, few laboratory studies have directly investigated the ability of naltrexone to alter relapse-inducing effects of opioid agonists, including their priming strength in reinstatement studies and their impact in brain regions known to be involved in drug-induced reinforcement in MRI studies. Here we directly address this issue by investigating the effects of continuous exposure to naltrexone on 1) fentanyl-induced reinstatement of drug-seeking behavior, 2) fentanyl-induced patterns of blood oxygenation level dependent (BOLD) activation in the nucleus accumbens (NAcc), and 3) fentanyl-induced changes in NAcc functional connectivity (FC) in awake non-human primates that are engaged in ongoing opioid self-administration studies. We found that naltrexone antagonizes the priming strength of fentanyl as shown by a rightward shift in its reinstatement dose-effect curve and that naltrexone surmountably antagonizes the BOLD response induced by fentanyl. However, while naltrexone also countered fentanyl's effects on NAcc FC, the effects were not surmounted by a higher dose of fentanyl. Together, these data suggest that, in contrast to naltrexone's modulation of fentanyl's effects on behavior and BOLD responses, their interactive effects on FC between multiple brain regions do not reflect their receptor-mediated activity. Additionally, we demonstrated opposing effects in the absence and presence of naltrexone on NAcc FC at baseline (i.e., in the absence of any fentanyl prime) suggesting that naltrexone alters FC at baseline, even though naltrexone appears behaviorally silent in the absence of an agonist prime. Together these data provide additional insight into ways in which naltrexone interacts with opioid agonists, both behaviorally and in the brain. Further understanding the effects of opioid agonists on patterns of FC could help elucidate our understanding of the neural processes that contribute to the initiation of and relapse to opioid-seeking behavior in OUD.
Assuntos
Comportamento de Procura de Droga , Fentanila , Naltrexona , Antagonistas de Entorpecentes , Núcleo Accumbens , Recidiva , Autoadministração , Naltrexona/farmacologia , Naltrexona/administração & dosagem , Animais , Fentanila/administração & dosagem , Fentanila/farmacologia , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Comportamento de Procura de Droga/efeitos dos fármacos , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Relação Dose-Resposta a Droga , Imageamento por Ressonância Magnética , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Macaca mulattaRESUMO
INTRODUCTION: The understanding of the pathological events in Alzheimer's disease (AD) has advanced dramatically, but the successful translation from rodent models into efficient human therapies is still problematic. METHODS: To examine how tau pathology can develop in the primate brain, we injected 12 macaques with a dual tau mutation (P301L/S320F) into the entorhinal cortex (ERC). An investigation was performed using high-resolution microscopy, magnetic resonance imaging (MRI), positron emission tomography (PET), and fluid biomarkers to determine the temporal progression of the pathology 3 and 6 months after the injection. RESULTS: Using quantitative microscopy targeting markers for neurodegeneration and neuroinflammation, as well as fluid and imaging biomarkers, we detailed the progression of misfolded tau spreading and the consequential inflammatory response induced by glial cells. DISCUSSION: By combining the analysis of several in vivo biomarkers with extensive brain microscopy analysis, we described the initial steps of misfolded tau spreading and neuroinflammation in a monkey model highly translatable to AD patients. HIGHLIGHTS: Dual tau mutation delivery in the entorhinal cortex induces progressive tau pathology in rhesus macaques. Exogenous human 4R-tau coaptates monkey 3R-tau during transneuronal spread, in a prion-like manner. Neuroinflammatory response is coordinated by microglia and astrocytes in response to tau pathology, with microglia targeting early tau pathology, while astrocytes engaged later in the progression, coincident with neuronal death. Monthly collection of CSF and plasma revealed a profile of changes in several AD core biomarkers, reflective of neurodegeneration and neuroinflammation as early as 1 month after injection.
Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Progressão da Doença , Macaca mulatta , Tomografia por Emissão de Pósitrons , Proteínas tau , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Doenças Neuroinflamatórias/patologia , Córtex Entorrinal/patologia , Córtex Entorrinal/metabolismo , Biomarcadores , Mutação , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , MasculinoRESUMO
Introduction: Decreasing rates of blood donation and close margins between blood supply and demand pose challenges in healthcare. Genetically engineered pig red blood cells (pRBCs) have been explored as alternatives to human RBCs for transfusion, and triple-gene knockout (TKO) modification improves the compatibility of pRBCs with human blood in vitro. In this study, we assessed the efficacy and risks of transfusing wild-type (WT)- and TKO-pRBCs into nonhuman primates (NHPs). Methods: Blood from O-type WT and TKO pigs was processed to produce pRBCs for transfusion, which were transfused or not into NHPs (n=4 per group: WT, TKO, and control) after 25% total blood volume withdrawal: their biological responses were compared. Hematological, biochemical, and immunological parameters were measured before, immediately after, and at intervals following transfusion. Two months later, a second transfusion was performed in three NHPs of the transfusion group. Results: Transfusion of both WT- and TKO-pRBCs significantly improved RBC counts, hematocrit, and hemoglobin levels up to the first day post-transfusion, compared to the controls. The transfusion groups showed instant complement activation and rapid elicitation of anti-pig antibodies, as well as elevated liver enzyme and bilirubin levels post-transfusion. Despite the higher agglutination titers with WT-pRBCs in the pre-transfusion crossmatch, the differences between the WT and TKO groups were not remarkable except for less impairment of liver function in the TKO group. After the second transfusion, more pronounced adverse responses without any hematological gain were observed. Conclusions: WT- and TKO-pRBC transfusions effectively increased hematologic parameters on the first day, with rapid clearance from circulation thereafter. However, pRBC transfusion triggers strong antibody responses, limiting the benefits of the pRBC transfusion and increasing the risk of adverse reactions.
Assuntos
Transfusão de Eritrócitos , Eritrócitos , Técnicas de Inativação de Genes , Animais , Transfusão de Eritrócitos/efeitos adversos , Transfusão de Eritrócitos/métodos , Suínos , Eritrócitos/imunologia , Eritrócitos/metabolismo , Animais Geneticamente Modificados , Hemoglobinas/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/deficiência , Hematócrito , Feminino , Masculino , PrimatasRESUMO
An economic choice entails computing and comparing the values of individual offers. Offer values are represented in the orbitofrontal cortex (OFC)-an area that participates in value comparison-but it is unknown where offer values are computed in the first place. One possibility is that this computation takes place in OFC. Alternatively, offer values might be computed upstream of OFC. For choices between edible goods, a primary candidate is the gustatory region of the anterior insula (gustatory cortex, GC). Here we recorded from the GC of male rhesus monkeys choosing between different juice types. As a population, neurons in GC represented the flavor, the quantity, and the subjective value of the juice chosen by the animal. These variables were represented by distinct groups of cells and with different time courses. Specifically, chosen value signals emerged shortly after offer presentation, while neurons encoding the chosen juice and the chosen quantity peaked after juice delivery. Surprisingly, neurons in GC did not represent individual offer values in a systematic way. In a computational sense, the variables encoded in GC follow the process of value comparison. Thus our results argue against the hypothesis that offer values are computed in GC. At the same time, signals representing the subjective value of the expected reward indicate that responses in GC are not purely sensory. Thus neuronal responses in GC appear consummatory in nature.
Assuntos
Comportamento de Escolha , Macaca mulatta , Neurônios , Animais , Masculino , Comportamento de Escolha/fisiologia , Neurônios/fisiologia , RecompensaRESUMO
Nonhuman primates (NHPs), especially rhesus macaques, have significantly contributed to our understanding of the neural computations underlying human vision. Besides the established homologies in the visual brain areas between these species and our ability to probe detailed neural mechanisms in monkeys at multiple scales, NHPs' ability to perform human-like visual behavior makes them an extremely appealing animal model of human vision. Traditionally, such behavioral studies have been conducted in controlled laboratory settings, offering experimenters tight control over variables like luminance, eye movements, and auditory interference. However, in-lab experiments have several constraints, including limited experimental time, the need for dedicated human experimenters, additional lab space requirements, invasive surgeries for headpost implants, and extra time and training for chairing and head restraints. To overcome these limitations, we propose adopting home-cage behavioral training and testing of NHPs, enabling the administration of many vision-based behavioral tasks simultaneously across multiple monkeys with reduced human personnel requirements, no NHP head restraint, and monkeys' unrestricted access to experiments. In this article, we present a portable, low-cost, easy-to-use kiosk system developed to conduct home-cage vision-based behavioral tasks in NHPs. We provide details of its operation and build to enable more open-source development of this technology. Furthermore, we present validation results using behavioral measurements performed in the lab and in NHP home cages, demonstrating the system's reliability and potential to enhance the efficiency and flexibility of NHP behavioral research.NEW & NOTEWORTHY Training nonhuman primates (NHPs) for vision-based behavioral tasks in a laboratory setting is a time-consuming process and comes with many limitations. To overcome these challenges, we have developed an affordable, open-source, wireless, touchscreen training system that can be placed in the NHPs' housing environment. This system enables NHPs to work at their own pace. It provides a platform to implement continuous behavioral training protocols without major experimenter intervention and eliminates the need for other standard practices like NHP chair training, collar placement, and head restraints. Hence, these kiosks ultimately contribute to animal welfare and therefore better-quality neuroscience in the long run. In addition, NHPs quickly learn complex behavioral tasks using this system, making it a promising tool for wireless electrophysiological research in naturalistic, unrestricted environments to probe the relation between brain and behavior.
Assuntos
Comportamento Animal , Macaca mulatta , Animais , Comportamento Animal/fisiologia , Masculino , Percepção Visual/fisiologia , Visão Ocular/fisiologiaRESUMO
BACKGROUND: African green monkeys (AGMs, also known as vervets, Cholorocebus aethiops sabaeus) have been used in a variety of biomedical research studies. The aim of this study was to generate a reference for normal organ weights and percentage organ weights in AGMs of different age categories and sex. METHODS: The organ weights were compiled from 479 AGMs (285 females and 194 males) from 2004 to 2021. Age and sex differences of absolute and relative organ weights were analyzed using analysis of variance. RESULTS: The findings demonstrate that males had higher body and organ weights than agematched females, but relative organ weights did not differ between males and females. At maturity, adrenal gland, brain, kidney, liver, thymus, and thyroid gland weights as a percentage of body weight declined, but relative weights of prostate gland, testes, and uterus were higher. CONCLUSION: These data should be beneficial to biomedical researchers and pathologists working with AGMs.
Assuntos
Caracteres Sexuais , Animais , Feminino , Masculino , Chlorocebus aethiops/fisiologia , Chlorocebus aethiops/anatomia & histologia , Tamanho do Órgão , Fatores Sexuais , Fatores EtáriosRESUMO
Friction ridges are important and unique biometric features that have been studied in fingerprint science since antiquity and used for human identification. This study aimed to analyze palmprints and soleprints of Callithrix penicillata, including the description of flexion creases, regions, minutiae classification, and delta counting, in order to evaluate the uniqueness of these data and feasibility of using this information as an identification method. Palmprints and footprints were collected using commercial fingerprint ink on A4 size paper. Following image digitalization using the GIMP (2.10.14) image editing program, regions and flexion creases were identified. A total of 600 minutiae were classified in females (288 palms and 312 soles) and 732 in males (360 palms and 372 soles), and all deltas were counted. It was possible to identify three main inconstant flexion creases, in both palmprints and soleprints, with different distribution and orientation when compared to those in humans. Less variety in the types of minutiae and differences in the distribution of deltas were found when compared to human studies. In addition, the hypothesis of non-coincident characteristics in each sample was confirmed.
Assuntos
Callithrix , Dermatoglifia , Animais , Callithrix/fisiologia , Masculino , Feminino , Humanos , Mãos/anatomia & histologia , Pé/anatomia & histologiaRESUMO
Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.
Assuntos
Suplementos Nutricionais , Protetores contra Radiação , Animais , Protetores contra Radiação/farmacologia , Vitamina E/farmacologia , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Cromanos/farmacologia , Masculino , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Macaca mulatta , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Fígado/patologiaRESUMO
BACKGROUND: One possible reason for the lack of FDA-approved pharmacotherapies to treat cocaine use disorder (CUD) is that, although cocaine is typically used in combination with alcohol, it is studied in isolation in preclinical studies. A better understanding of the cocaine-alcohol interactions that promote polysubstance use (PSU) will improve animal models of CUD and hasten pharmacotherapy development. We used a rhesus monkey model of cocaine-alcohol PSU to investigate one possible mechanism: that alcohol is used to mitigate negative effects associated with termination of cocaine use. METHODS: In 6 adult male rhesus monkeys, the relationship between self-administered cocaine intake and oral ethanol intake 2hours later was examined during self-administration of cocaine (0.0003-0.3mg/kg per injection, i.v.) under a fixed-ratio 30 schedule (FR30) or a progressive-ratio (PR) schedule. Next, ethanol consumption was measured 0-120minutes after experimenter-administered cocaine (0.3-1.7mg/kg, i.v.). RESULTS: Self-administered cocaine intake under both FR30 and PR schedules was unrelated to oral ethanol intakes 2hours later. When cocaine was administered non-contingently, cocaine decreased ethanol intake as well as intake of a non-alcoholic solution in monkeys who never consumed ethanol (n=4) in a time- and dose-dependent manner. CONCLUSIONS: Taken together, the results do not provide evidence for cocaine-induced increases in ethanol consumption. By extension, the results do not support the hypothesis that cocaine users drink alcohol to counteract negative effects that occur after terminating use. This finding implies either that such effects do not exist or that such effects exist but are unaffected by ethanol.
Assuntos
Consumo de Bebidas Alcoólicas , Cocaína , Macaca mulatta , Autoadministração , Animais , Masculino , Cocaína/administração & dosagem , Etanol/administração & dosagem , Esquema de Reforço , Relação Dose-Resposta a Droga , Transtornos Relacionados ao Uso de CocaínaRESUMO
While the majority of people with cocaine use disorders (CUD) also co-use tobacco/nicotine, most preclinical cocaine research does not include nicotine. The present study examined nicotine and cocaine co-use under several conditions of intravenous drug self-administration in monkeys, as well as potential peripheral biomarkers associated with co-use. In Experiment 1, male rhesus monkeys (N = 3) self-administered cocaine (0.001-0.1 mg/kg/injection) alone and with nicotine (0.01-0.03 mg/kg/injection) under a progressive-ratio schedule of reinforcement. When nicotine was added to cocaine, there was a significant leftward/upward shift in the number of injections received. In Experiment 2, socially housed female and male cynomolgus monkeys (N = 14) self-administered cocaine under a concurrent drug-vs-food choice schedule of reinforcement. Adding nicotine to the cocaine solution shifted the cocaine dose-response curves to the left, with more robust shifts noted in the female animals. There was no evidence of social rank differences. To assess reinforcing strength, delays were added to the presentation of drug; the co-use of nicotine and cocaine required significantly longer delays to decrease drug choice, compared with cocaine alone. Blood samples obtained post-session were used to analyze concentrations of neuronally derived small extracellular vesicles (NDE); significant differences in NDE profile were observed for kappa-opioid receptors when nicotine and cocaine were co-used compared with each drug alone and controls. These results suggest that drug interactions involving the co-use of nicotine and cocaine are not simply changing potency, but rather resulting in changes in reinforcing strength that should be utilized to better understand the neuropharmacology of CUD and the evaluation of potential treatments.
RESUMO
The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.
Assuntos
Raios gama , Macaca mulatta , Proteômica , Animais , Raios gama/efeitos adversos , Masculino , Proteômica/métodos , Biomarcadores/sangue , Irradiação Corporal Total/efeitos adversos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteoma/análise , Proteoma/metabolismoRESUMO
Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca mulatta , Miócitos Cardíacos , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular , Humanos , Transplante Autólogo , Tomografia por Emissão de Pósitrons , Fatores de Tempo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologiaRESUMO
Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.
Assuntos
Atenção , Fixação Ocular , Macaca mulatta , Córtex Pré-Frontal , Córtex Pré-Frontal/fisiologia , Animais , Atenção/fisiologia , Masculino , Fixação Ocular/fisiologia , Interação SocialRESUMO
Status epilepticus (SE) is a medical and neurologic emergency that may lead to permanent brain damage, morbidity, or death. Animal models of SE are particularly important to study the pathophysiology of SE and mechanisms of SE resistance to antiseizure medications with the aim to develop new, more effective treatments. In addition to rodents (rats or mice), larger mammalian species such as dogs, pigs, and nonhuman primates are used. This short review describes and discusses the value and limitations of the most frequently used mammalian models of SE. Issues that are discussed include (1) differences between chemical and electrical SE models; (2) the role of genetic background and environment on SE in rodents; (3) the use of rodent models (a) to study the pathophysiology of SE and mechanisms of SE resistance; (b) to study developmental aspects of SE; (c) to study the efficacy of new treatments, including drug combinations, for refractory SE; (d) to study the long-term consequences of SE and identify biomarkers; (e) to develop treatments that prevent or modify epilepsy; (e) to study the pharmacology of spontaneous seizures; (4) the limitations of animal models of induced SE; and (5) the advantages (and limitations) of naturally (spontaneously) occurring SE in epileptic dogs and nonhuman primates. Overall, mammalian models of SE have significantly increased our understanding of the pathophysiology and drug resistance of SE and identified potential targets for new, more effective treatments. This paper was presented at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in April 2024.