Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(7): e9121, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866012

RESUMO

The salt marsh harvest mouse (Reithrodontomys raviventris; RERA) is an endangered species endemic to the coastal wetlands of the San Francisco Estuary, California. RERA are specialized to saline coastal wetlands, and their historical range has been severely impacted by landscape conversion and the introduction of non-native plant and rodent species. A better understanding of their diet is needed to assess habitat quality, particularly in relation to potential competitors. We investigated three questions using DNA metabarcoding with ITS2 and trnL markers: (1) Do RERA specialize on the native plant, pickleweed (Salicornia pacifica), (2) Do RERA consume non-native plants, and (3) What is the dietary niche breadth and overlap with three sympatric native and non-native rodents? RERA diet was dominated by two plants, native Salicornia and non-native salt bush (Atriplex spp.), but included 48 plant genera. RERA diet breadth was narrowest in fall, when they consumed the highest frequencies of Salicornia and Atriplex, and broadest in spring, when the frequencies of these two plants were lowest. Diet breadth was slightly lower for RERA than for co-occurring species in pairwise comparisons. All four species consumed similarly high frequencies of wetland plants, but RERA consumed fewer grasses and upland plants, suggesting that it may be less suited to fragmented habitat than sympatric rodents. Diet overlap was lowest between RERA and the native California vole (Microtis californicus). In contrast, RERA diet overlapped substantially with the native western harvest mouse (R. megalotis) and non-native house mouse (Mus musculus), suggesting potential for competition if these species become sufficiently abundant.

2.
Ecol Evol ; 10(14): 7627-7643, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760553

RESUMO

In herbivores, survival and reproduction are influenced by quality and quantity of forage, and hence, diet and foraging behavior are the foundation of an herbivore's life history strategy. Given the importance of diet to most herbivores, it is imperative that we know the species of plants they prefer, especially for herbivorous species that are at risk for extinction. However, it is often difficult to identify the diet of small herbivores because: (a) They are difficult to observe, (b) collecting stomach contents requires sacrificing animals, and (c) microhistology requires accurately identifying taxa from partially digested plant fragments and likely overemphasizes less-digestible taxa. The northern Idaho ground squirrel (Urocitellus brunneus) is federally threatened in the United States under the Endangered Species Act. We used DNA metabarcoding techniques to identify the diet of 188 squirrels at 11 study sites from fecal samples. We identified 42 families, 126 genera, and 120 species of plants in the squirrel's diet. Our use of three gene regions was beneficial because reliance on only one gene region (e.g., only trnL) would have caused us to miss >30% of the taxa in their diet. Northern Idaho ground squirrel diet differed between spring and summer, frequency of many plants in the diet differed from their frequency within their foraging areas (evidence of selective foraging), and several plant genera in their diet were associated with survival. Our results suggest that while these squirrels are generalists (they consume a wide variety of plant species), they are also selective and do not eat plants relative to availability. Consumption of particular genera such as Perideridia may be associated with higher overwinter survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA