Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000752

RESUMO

Semiconducting conjugated polymers (CPs) are pivotal in advancing organic electronics, offering tunable properties for solar cells and field-effect transistors. Here, we carry out first-principle calculations to study individual cis-polyacetylene (cis-PA) oligomers and their ensembles. The ground electronic structures are obtained using density functional theory (DFT), and excited state dynamics are explored by computing nonadiabatic couplings (NACs) between electronic and nuclear degrees of freedom. We compute the nonradiative relaxation of charge carriers and photoluminescence (PL) using the Redfield theory. Our findings show that electrons relax faster than holes. The ensemble of oligomers shows faster relaxation compared to the single oligomer. The calculated PL spectra show features from both interband and intraband transitions. The ensemble shows broader line widths, redshift of transition energies, and lower intensities compared to the single oligomer. This comparative study suggests that the dispersion forces and orbital hybridizations between chains are the leading contributors to the variation in PL. It provides insights into the fundamental behaviors of CPs and the molecular-level understanding for the design of more efficient optoelectronic devices.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234495

RESUMO

In this study, we aimed to elucidate the effects of temperature on the photoluminescence from ZnO-SiO2 nanocomposite and to describe the preparation of SiO2-coated ZnO nanocrystals using a chemical precipitation method, as confirmed by Fourier transform infrared (FTIR) and powder X-ray diffraction analysis (XRD) techniques. Analyses using high-resolution transmission microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and electrophoretic light scattering (ELS) techniques showed that the new nanocomposite has an average size of 70 nm and 90% silica. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and photoluminescence-excitation (PLE) measurements at different temperatures revealed two emission bands at 385 and 590 nm when the nanomaterials were excited at 325 nm. The UV and yellow emission bands were attributed to the radiative recombination and surface defects. The variable-temperature, time-resolved photoluminescence (VT-TRPL) measurements in the presence of SiO2 revealed the increase in the exciton lifetime values and the interplay of the thermally induced nonradiative recombination transfer of the excited-state population of the yellow emission via deep centers (DC). The results pave the way for more applications in photocatalysis and biomedical technology.

3.
ACS Nano ; 11(12): 12346-12357, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29155558

RESUMO

Bimetallic nanocatalysts have the potential to surmount current limitations in industrial catalysis if their electronic and optical properties can be effectively controlled. However, improving the performance of bimetallic photocatalysts requires a functional understanding of how the intricacies of their morphology and composition dictate every element of their optical response. In this work, we examine Au and Pt-decorated Au nanorods on a single-particle level to ascertain how Pt influences the plasmon resonance of the bimetallic nanostructure. We correlated scattering, photoluminescence, and pure absorption of individual nanostructures separately to expose the impact of Pt on each component. We found that the scattering and absorption spectra of uncoated Au nanorods followed expected trends in peak intensity and shape and were accurately reproduced by finite difference time domain simulations. In contrast, the scattering and absorption spectra of single Pt-decorated Au nanorods exhibited red-shifted, broad features and large deviations in line shape from particle to particle. Simulations using an idealized geometry confirmed that Pt damps the plasmon resonance of individual Au nanorods and that spectral changes after Pt deposition were a consequence of coupling between Au and Pt in the hybrid nanostructure. Simulations also revealed that the Au nanorod acts as an antenna and enhances absorption in the Pt islands. Furthermore, comparing photoluminescence spectra from Au and Pt-decorated Au nanorods illustrated that emission was significantly reduced in the presence of Pt. The reduction in photoluminescence intensity indicates that Pt lowers the number of hot carriers in the Au nanorod available for radiative recombination through either direct production of hot carriers in Pt following enhanced absorption or charge transfer from Au to Pt. Overall, these results confirm that the Pt island morphology and distribution on the nanorod surface contribute to the optical response of individual hybrid nanostructures and that the damping observed in ensemble measurements originates not only from structural heterogeneity but also because of significant damping in single nanostructures.

4.
Nano Lett ; 16(3): 1996-2003, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26882202

RESUMO

Two-dimensional transition metal dichalcogenides (MX2, M = Mo, W; X = S, Se) hold great potential in optoelectronics and photovoltaics. To achieve efficient light-to-electricity conversion, electron-hole pairs must dissociate into free charges. Coulomb interaction in MX2 often exceeds the charge transfer driving force, leading one to expect inefficient charge separation at a MX2 heterojunction. Experiments defy the expectation. Using time-domain density functional theory and nonadiabatic (NA) molecular dynamics, we show that quantum coherence and donor-acceptor delocalization facilitate rapid charge transfer at a MoS2/MoSe2 interface. The delocalization is larger for electron than hole, resulting in longer coherence and faster transfer. Stronger NA coupling and higher acceptor state density accelerate electron transfer further. Both electron and hole transfers are subpicosecond, which is in agreement with experiments. The transfers are promoted primarily by the out-of-plane Mo-X modes of the acceptors. Lighter S atoms, compared to Se, create larger NA coupling for electrons than holes. The relatively slow relaxation of the "hot" hole suggests long-distance bandlike transport, observed in organic photovoltaics. The electron-hole recombination is notably longer across the MoS2/MoSe2 interface than in isolated MoS2 and MoSe2, favoring long-lived charge separation. The atomistic, time-domain studies provide valuable insights into excitation dynamics in two-dimensional transition metal dichalcogenides.

5.
J Phys Chem Lett ; 6(22): 4463-9, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26505613

RESUMO

Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron-hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wave functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron-vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA