Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.536
Filtrar
1.
Virology ; 598: 110189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089051

RESUMO

Bovine viral diarrhea virus (BVDV) is a widespread pathogen of cattle and other mammals that causes major economic losses in the livestock industry. N4-TSC and 6NO2-TSC are two thiosemicarbazones derived from 1-indanone that exhibit anti-BVDV activity in vitro. These compounds selectively inhibit BVDV and are effective against both cytopathic and non-cytopathic BVDV-1 and BVDV-2 strains. We confirmed that N4-TSC acts at the onset of viral RNA synthesis, as previously reported for 6NO2-TSC. Moreover, resistance selection and characterization showed that N4-TSCR mutants were highly resistant to N4-TSC but remained susceptible to 6NO2-TSC. In contrast, 6NO2-TSCR mutants were resistant to both compounds. Additionally, mutations N264D and A392E were found in the viral RNA-dependent RNA polymerase (RdRp) of N4-TSCR mutants, whereas I261 M was found in 6NO2-TSCR mutants. These mutations lay in a hydrophobic pocket within the fingertips region of BVDV RdRp that has been described as a "hot spot" for BVDV non-nucleoside inhibitors.


Assuntos
Antivirais , Farmacorresistência Viral , Genótipo , Indanos , Tiossemicarbazonas , Antivirais/farmacologia , Antivirais/química , Animais , Bovinos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Indanos/farmacologia , Indanos/química , Farmacorresistência Viral/genética , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Vírus da Diarreia Viral Bovina/genética , Linhagem Celular , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Diarreia Viral Bovina Tipo 2/genética , Vírus da Diarreia Viral Bovina Tipo 2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Mutação , RNA Viral/genética
2.
Antiviral Res ; : 105988, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154752

RESUMO

BACKGROUND: In vitro passage experiments are crucial to the development of antiretroviral (ARV) drugs. METHODS: We created an online database containing data from 102 published studies in which HIV-1 or HIV-2 was cultured with increasing concentrations of the FDA-approved nucleoside RT inhibitors (NRTIs), nonnucleoside RT inhibitors (NNRTIs), integrase strand transfer inhibitors (INSTIs), protease inhibitors (PIs), capsid inhibitor (CAI) lenacapavir, and nucleoside RT translocation inhibitor (NRTTI) islatravir. We summarized the mutations selected in the subset of passage experiments with NRTIs lamivudine (3TC), emtricitabine (FTC), abacavir (ABC), tenofovir (TFV), and zidovudine (AZT), NNRTIs doravirine (DOR), efavirenz (EFV), and rilpivirine (RPV), INSTIs bictegravir (BIC), cabotegravir (CAB), and dolutegravir (DTG), and PIs atazanavir (ATV), darunavir (DRV), and lopinavir (LPV). Mutations selected in vitro were compared with those selected in persons receiving the same ARV. RESULTS: Twenty-seven studies described 89 experiments of wildtype isolates passaged with 3TC, FTC, ABC, TFV, or AZT; sixteen studies described 89 experiments passaged with EFV, RPV, or DOR; eleven studies described 76 experiments passaged with the INSTIs BIC, CAB, or DTG; six studies described 33 experiments passaged with ATV, LPV, or DRV. With several exceptions, mutations selected in two or more experiments were among the most common mutations selected in persons receiving the same ARV. CONCLUSIONS: We created a database of published ARV in vitro selection experiments. Mutations emerging from these experiments generally predict those observed in persons receiving the same ARV. However, there are notable differences in mutation frequencies between in vitro and in vivo settings.

3.
J Cosmet Dermatol ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155606

RESUMO

PURPOSE: Nucleoside-modified messenger RNA (modRNA) holds the potential for facilitating genetic enhancement of stem cells. In this study, modRNA encoding hepatocyte growth factor (modHGF) was used to chemically modify adipose-derived mesenchymal stem cells (ADSCs) and the effect of modified ADSCs on the activation of hypertrophic scar fibroblasts (HSFs) was evaluated. METHODS: CCK-8, wound healing, and transwell assays were utilized to evaluate the viability and migratory potential of modHGF-engineered ADSCs and their effect on HSF activation. Reverse transcription-polymerase chain reaction, western blot, and immunofluorescence staining were performed to detect the expression of collagen-I (Col I), collagen-III (Col III), alpha-smooth muscle actin (α-SMA), matrix metallopeptidase 1 (MMP-1), and MMP-3. RESULTS: Transfection of ADSCs with modHGF (HGF-ADSC) resulted in enhanced production of HGF. Meanwhile, modHGF modification enhanced the viability and migration of ADSCs. Notably, culture media from HGF-ADSCs exhibited a more potent inhibitory effect on the proliferation and migration of HSFs. In addition, culture media from HGF-ADSCs inhibited extracellular matrix synthesis of HSFs, as evidenced by reduced expression levels of Col I, Col III, and α-SMA, while increasing expression of MMP-1 and MMP-3. Conversely, neutralization experiments confirmed that these effects could be effectively alleviated by blocking HGF activity. CONCLUSION: modHGF modification optimizes the inhibitory effect of ADSCs on HSF activation, which provides a promising alternative for preventing and treating hyperplastic scars.

4.
Antiviral Res ; 229: 105977, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089332

RESUMO

Rabies is a fatal neurological disorder caused by rabies virus (RABV) infection. Approximately 60,000 patients die from rabies annually, and there are no effective treatments for this disease. Nucleoside analogs are employed as antiviral drugs based on their broad antiviral spectrum, and certain nucleoside analogs have been reported to exhibit anti-RABV activity. The nucleoside analog ß-d-N4-hydroxycytidine (NHC) has antiviral effects against a range of RNA viruses. Molnupiravir (MPV), a prodrug of NHC, is clinically used as an oral antiviral drug for coronavirus infections. Despite its broad-spectrum activity, the antiviral activity of NHC against RABV remains unclear. In this study, we reveal that NHC exhibits comparable in vitro anti-RABV activity as ribavirin and favipiravir (also known as T-705) with a 90% effective concentration of 6 µM in mouse neuroblastoma cells. NHC reduced viral loads in neuronal and nonneuronal cells in a dose-dependent manner. Both laboratory and field RABVs (fixed and street strains, respectively) were susceptible to NHC. However, no increase in survival or reduction in viral titers in the brain was observed in RABV-infected mice treated prophylactically with MPV. These findings highlight the potential and challenges of NHC in the treatment of RABV infection.


Assuntos
Amidas , Antivirais , Citidina , Vírus da Raiva , Raiva , Carga Viral , Animais , Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Vírus da Raiva/efeitos dos fármacos , Camundongos , Raiva/tratamento farmacológico , Raiva/virologia , Amidas/farmacologia , Carga Viral/efeitos dos fármacos , Pirazinas/farmacologia , Ribavirina/farmacologia , Hidroxilaminas/farmacologia , Linhagem Celular Tumoral , Linhagem Celular
5.
Cells ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39120309

RESUMO

Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1-4), little is known about the more divergent Group II NMEs (NME5-9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members.


Assuntos
Mitocôndrias , Humanos , Animais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo Difosfato Quinase D/metabolismo , Nucleosídeo Difosfato Quinase D/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-39087693

RESUMO

Aberrant metabolism of purines and pyrimidines led to development of drugs for treatment of various diseases, such as inflammatory, neurological, cardiovascular, viral infections and cancer. Purine and Pyrimidine Symposia are characterized by close interactions, leading to extensive cross-fertilization on methodology and translating not only from bench-to-bedside, but also between various disciplines such as medicinal chemistry, pharmacology, oncology, virology, rheumatology, biochemistry, pediatrics, cardiology, surgery and immunology. This background was fundamental in our studies on how to optimize application of existing drugs (5-fluorouracil [5FU], thiopurines, antifolates such as methotrexate) but also to support development of novel drugs such as gemcitabine, novel antifolates, S-1, TAS-102 and fluorocyclopentenylcytosine. Knowledge of their metabolism helped to design rational combinations such as of gemcitabine with cisplatin, one of the most widely used drug combinations for various cancers. The combination of 5FU with uridine, led to the development of triacetyluridine registered for emergency treatment of patients with lethal 5FU toxicity. Mechanisms of action were studied by careful analysis of their metabolism, using classical enzyme assays with radioactive precursors and HPLC analysis. Drug metabolism moved from manually operated HPLC systems with UV-detection for peak identification and paper rolls for quantification, to computer-operated HPLC with automatic multi-wavelength and fluorometric peak detection and more recently to ultrasensitive, highly specific mass-spectrometry-based systems. Some aspects, however, never changed; careful analysis of the results and being prepared for the unexpected. The latter actually led to the most interesting results. Investigation of (nucleoside/nucleotide) metabolism remains an exciting field of research.

7.
Antimicrob Agents Chemother ; : e0045824, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105584

RESUMO

Antiretroviral therapy has substantially reduced morbidity, mortality, and disease transmission in people living with HIV. Islatravir is a nucleoside reverse transcriptase translocation inhibitor that inhibits HIV-1 replication by multiple mechanisms of action, and it is in development for the treatment of HIV-1 infection. In preclinical and clinical studies, islatravir had a long half-life (t½) of 3.0 and 8.7 days (72 and 209 hours, respectively); therefore, islatravir is being investigated as a long-acting oral antiretroviral agent. A study was conducted to definitively elucidate the terminal t½ of islatravir and its active form islatravir-triphosphate (islatravir-TP). A single-site, open-label, non-randomized, single-dose phase 1 study was performed to evaluate the pharmacokinetics and safety of islatravir in plasma and the pharmacokinetics of islatravir-TP in peripheral blood mononuclear cells after administration of a single oral dose of islatravir 30 mg. Eligible participants were healthy adult males without HIV infection between the ages of 18 and 65 years. Fourteen participants were enrolled. The median time to maximum plasma islatravir concentration was 1 hour. Plasma islatravir concentrations decreased in a biphasic manner, with a t½ of 73 hours. The t½ (percentage geometric coefficient of variation) of islatravir-TP in peripheral blood mononuclear cells through 6 weeks (~1008 hours) after dosing was 8.1 days or 195 hours (25.6%). Islatravir was generally well tolerated with no drug-related adverse events observed. Islatravir-TP has a long intracellular t½, supporting further clinical investigation of islatravir administered at an extended dosing interval.

8.
Expert Opin Drug Saf ; : 1-10, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39129454

RESUMO

BACKGROUND: Tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF) are widely used nucleoside reverse transcriptase inhibitors (NRTIs), necessitating a thorough understanding of their safety profiles to ensure optimal patient care and treatment adherence. METHODS: We employed statistical methods including the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-Item Gamma Poisson Shrinker (MGPS) to compare and evaluate the safety profiles of these NRTIs. RESULTS: TAF was significantly associated with weight increase (ROR: 6.43; 95% CI: 5.93-6.96) and specific psychiatric disorders. TDF showed a notable signal for renal disorders and product-related issues, including product dose omission (ROR: 3.53; 95% CI: 3.22-3.87). Additionally, the study highlighted differences in safety signals related to pregnancy outcomes, with TAF having a higher ROR for maternal exposure (ROR: 7.83; 95% CI: 7.06-8.69) and TDF for fetal exposure (ROR: 4.51; 95% CI: 3.93-5.18), underscoring the need for cautious use in pregnant women. The comparative analysis also identified signals for osteonecrosis (ROR: 108.81; 95% CI: 106.25-111.43) and bone loss (ROR: 714; 95% CI: 685.49-743.68) for TAF and TDF, respectively, highlighting the importance of bone health considerations in treatment plans. CONCLUSION: These findings underscore the importance of personalized antiviral therapy and patient safety.

9.
N Biotechnol ; 83: 163-174, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151888

RESUMO

Maximizing production potential of recombinant proteins such as monoclonal antibodies (mAbs) in Chinese Hamster Ovary (CHO) cells is a key enabler of reducing cost of goods of biologics. In this study, we explored various strategies to utilize adenosine mediated effects in biologics manufacturing processes. Results show that supplementation of adenosine increases specific productivity by up to two-fold while also arresting cell growth. Introducing adenosine in intensified perfusion processes in a biphasic manner significantly enhanced overall productivity. Interestingly, adenosine effect was observed to be dependent on the cell growth state. Using specific receptor antagonists and inhibitors, we identified that ENTs (primarily Slc29a1) mediate the uptake of adenosine in CHO cell cultures. Transcriptomics data showed an inverse correlation between Slc29a1 expression levels and peak viable cell densities. Data suggests that in fed-batch cultures, adenosine can be produced extracellularly. Blocking Slc29a1 using ENT inhibitors such as DZD and DP alone or in combination with CD73 inhibitor, PSB12379, resulted in a twofold increase in peak viable cell densities as well as productivities in fed batch - a novel strategy that can be applied to biologics manufacturing processes. This is the first study that suggests that adenosine production/accumulation in CHO cell cultures can potentially regulate the transition of CHO cells from exponential to stationary phase. We also demonstrate strategies to leverage this regulatory mechanism to maximize the productivity potential of biologics manufacturing processes.

10.
Anal Bioanal Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160437

RESUMO

Queuosine (Q) is a hypermodified 7-deaza-guanosine nucleoside exclusively synthesized by bacteria. This micronutrient and its respective nucleobase form queuine (q) are salvaged by humans either from gut microflora or digested food. Depletion of Q-tRNA in human or mouse cells causes protein misfolding that triggers endoplasmic reticular stress and the activation of the unfolded protein responses. In vivo, this reduces the neuronal architecture of the mouse brain affecting learning and memory. Herein, a sensitive method for quantifying free q and Q in human blood was developed, optimised and validated. After evaluating q/Q extraction efficiency in several different solid-phase sorbents, Bond Elut PBA (phenylboronic acid) cartridges were found to have the highest extraction recovery for q (82%) and Q (71%) from pooled human plasma. PBS with 4% BSA was used as surrogate matrix for method development and validation. An LC-MS/MS method was validated across the concentration range of 0.0003-1 µM for both q and Q, showing excellent linearity (r2 = 0.997 (q) and r2 = 0.998 (Q)), limit of quantification (0.0003 µM), accuracy (100.39-125.71%) and precision (CV% < 15.68%). In a sampling of healthy volunteers (n = 44), there was no significant difference in q levels between male (n = 14; mean = 0.0068 µM) and female (n = 30; mean = 0.0080 µM) participants (p = 0.50). Q was not detected in human plasma. This validated method can now be used to further substantiate the role of q/Q in nutrition, physiology and pathology.

11.
Biomed Chromatogr ; : e5965, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039650

RESUMO

The aim of this study was to assess the pharmacokinetics of the existing remdesivir intravenous formulation (100 mg dose) against the newly developed oral formulation (20 mg dose) for remdesivir and its active nucleoside metabolite (GS-441524) in beagle dogs followed by healthy human volunteers. A quantification method for remdesivir and its active nucleoside metabolite (GS-441524) in beagle dog and human plasma has been developed and validated using liquid chromatography coupled to triple quadrupole mass spectrometry detection. The analytical methods for beagle dogs and human differ in the calibration curve range, plasma matrix, processing volume, reconstitution volume and injection volume; however all other parameters were same in both methods. A simple protein precipitation extraction was carried out using acetonitrile containing the internal standard remdesivir D5. Remdesivir and GS-441524 were separated on an Endurus C-18P, 100 × 4.6 mm, 3 µm column and detected using a mass spectrometer with electrospray ionization in positive ion mode. The ion transitions used were m/z 603.1 → m/z 200.0 for remdesivir, m/z 292.0 → m/z 202.2 for GS-441524 and m/z 608.2 → m/z 205.1 for remdesivir D5. The calibration curve results were linear in beagle dog plasma (2.0-2,000.8 ng/ml range for remdesivir and 2.0-1,500.4 ng/ml for GS-441524) and human plasma (30.0-4,503.9 ng/ml range for remdesivir and 2.0-200.4 ng/ml for GS-441524). The recovery was >90% in beagle dog and human plasma. These methods were successfully used to determine the pharmacokinetic parameters of the intravenous injection and subcutaneous tablets dosage forms in beagle dogs and healthy humans.

12.
Antimicrob Agents Chemother ; 68(8): e0046424, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953364

RESUMO

Islatravir is a deoxynucleoside analog being developed for the treatment of HIV-1 infection. Clinical studies are being conducted to evaluate islatravir, administered in combination with other antiretroviral therapies, at doses of 0.25 mg once daily and 2 mg once weekly. In multiple previous clinical studies, islatravir was generally well tolerated, with no clear trend in cardiac adverse events. A trial was conducted to evaluate the effect of islatravir on cardiac repolarization. A randomized, double-blind, active- and placebo-controlled phase 1 trial was conducted, in which a single dose of islatravir 0.75 mg, islatravir 240 mg (supratherapeutic dose), moxifloxacin 400 mg (active control), or placebo was administered. Continuous 12-lead electrocardiogram monitoring was performed before dosing through 24 hours after dosing. QT interval measurements were collected, and safety and pharmacokinetics were evaluated. Sixty-three participants were enrolled, and 59 completed the study. Fridericia's QT correction for heart rate was inadequate; therefore, a population-specific correction was applied (QTcP). The placebo-corrected change from baseline in QTcP (ΔΔQTcP) interval at the observed geometric mean maximum plasma concentration associated with islatravir 0.75 mg and islatravir 240 mg was <10 ms at all time points. Assay sensitivity was confirmed because the use of moxifloxacin 400 mg led to a ΔΔQTcP >10 ms. The pharmacokinetic profile of islatravir was consistent with that of previous studies, and islatravir was generally well tolerated. Results from the current trial suggest that single doses of islatravir as high as 240 mg do not lead to QTc interval prolongation.


Assuntos
Eletrocardiografia , Fluoroquinolonas , Moxifloxacina , Humanos , Adulto , Masculino , Eletrocardiografia/efeitos dos fármacos , Método Duplo-Cego , Feminino , Pessoa de Meia-Idade , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/farmacocinética , Moxifloxacina/efeitos adversos , Moxifloxacina/farmacocinética , Frequência Cardíaca/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Adulto Jovem , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/uso terapêutico , Compostos Aza/efeitos adversos , Compostos Aza/farmacocinética , Desoxiadenosinas
13.
Bioeng Transl Med ; 9(4): e10622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036083

RESUMO

Recent technological advances in the production of in vitro transcribed messenger RNA (IVT-mRNA) facilitate its clinical use as well as its application in basic research. In this regard, numerous chemical modifications, which are not naturally observed in endogenous mRNA, have been implemented primarily to address the issue of immunogenicity and improve its biological performance. However, recent findings suggested pronounced differences between expression levels of IVT-mRNAs with different nucleoside modifications in transfected cells. Given the multistep process of IVT-mRNA delivery and subsequent intracellular expression, it is unclear which step is influenced by IVT-mRNA chemistry. Here, we deconvolute this process and show that the nucleoside modification does not interfere with complexation of carriers, their physicochemical properties, and extracellular stability, as exemplified by selected modifications. The immediate effect of mRNA chemistry on the efficiency of ribosomal protein synthesis as a contributor to differences in expression was quantified by in vitro cell-free translation. Our results demonstrate that for the nucleoside modifications tested, translatability was the decisive step in determining overall protein production. Also of special importance for future work on rational selection of tailored synthetic mRNA chemistries, our findings set a workflow to identify potentially limiting, modification-dependent steps in the complex delivery process.

14.
Acta Pharm Sin B ; 14(7): 3140-3154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027259

RESUMO

Thymus is the important immune organ, responsible for T cell development and differentiation. The lower circulating T counts have been observed in patients who died from COVID-19 compared with survivors. Azvudine, also known as FNC, is a thymus-homing anti-SARS-CoV-2 drug in treating COVID-19 patients. In this study, single-cell transcriptome, proteomics, and parallel reaction monitoring (PRM) were applied to insight into the activation process of FNC in rat and SARS-CoV-2 rhesus monkey thymus. The results indicated that thymic immune cells possess a robust metabolic capacity for cytidine-analogue drugs such as FNC. Key enzymes involved in the FNC phosphorylation process, such as Dck, Cmpk1, and Nme2, were highly expressed in CD4+ T cells, CD8+ T cells, and DP (CD4+ CD8+) cells. Additionally, FNC could upregulate multiple phosphorylated kinases in various cell types while downregulating the phosphatases, phosphoribosyl transferases, and deaminases, respectively. The robust phosphorylation capacity of the thymus for cytidine analogue drug FNC, and the activation effect of FNC on the NAs metabolism system potentially contribute to its enrichment in the thymus and immune protection effect. This suggests that it is crucial to consider the expression level of phosphorylation kinases when evaluating NA drug properties, as an important factor during antiviral drug design.

15.
Adv Pharmacol ; 100: 1-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034049

RESUMO

A new drug can have its origin in either pharma, biotech or academia. In general, discovery scientists working in pharma and biotech are advantaged over their academic counterparts and the relative advantages and disadvantages associated are discussed in depth. Against all odds, an increasing number of important drugs have had their origins in academia. This article reports three case studies from the Liotta Research Group (LRG), which explores the special circumstances that allowed these drug development campaigns to be successful. The first involves the antiretroviral agent, emtricitabine. In this case efficient synthetic methodology, developed in the LRG, coupled with some key university and commercial sector partnerships, enabled a group of academic collaborators to discover and develop a highly effective HIV reverse transcriptase inhibitor. The second case study involves the discovery and development of the breakthrough hepatitis C drug, sofosbuvir. Based on key input from Professors Schinazi and Liotta at Emory University, scientists at the Emory startup, Pharmasset, identified the nucleoside core of the drug that would become sofosbuvir. Subsequent analysis of its phosphorylation profile by Pharmasset scientists suggested that converting it to its corresponding monophosphate prodrug would circumvent a kinase block and enable it to be an effective hepatitis C polymerase inhibitor. The third case study describes the formation of DRIVE (Drug Innovation Ventures at Emory)/EIDD (Emory Institute for Drug Development), which were created to circumvent unintended impediments for carrying out academic drug discovery and development. Although DRIVE/EIDD is a wholly-owned, not-for-profit subsidiary of Emory University, it contains many attributes that enables it to operate much more nimbly than a typical academic laboratory. With an experienced drug development team and no shareholders to distract them, DRIVE/EIDD was able to focus its attention of the development of drugs to address viral diseases of global concern. In particular, their strategy to identify and develop an antiviral agent active against multiple single-stranded RNA viruses led to molnupiravir, a broadly active, oral drug that received Emergency Use Authorization for the treatment of SARS-CoV-2 infections (i.e., COVID-19).


Assuntos
Descoberta de Drogas , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Desenvolvimento de Medicamentos/métodos , Emtricitabina/uso terapêutico , Sofosbuvir
16.
Drug Dev Res ; 85(5): e22237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032059

RESUMO

The global prevalence of RNA virus infections has presented significant challenges to public health in recent years, necessitating the expansion of its alternative therapeutic library. Due to its evolutional conservation, RNA-dependent RNA polymerase (RdRp) has emerged as a potential target for broad-spectrum antiviral nucleoside analogues. However, after over half a century of structural modification, exploring unclaimed chemical space using frequently-used structural substitution methods to design new nucleoside analogues is challenging. In this study, we explore the use of the "ring-opening" strategy to design new base mimics, thereby using these base mimics to design new nucleoside analogues with broad-spectrum antiviral activities. A total of 29 compounds were synthesized. Their activity against viral RdRp was initially screened using an influenza A virus RdRp high-throughput screening model. Then, the antiviral activity of 38a was verified against influenza virus strain A/PR/8/34 (H1N1), demonstrating a 50% inhibitory concentration (IC50) value of 9.95 µM, which was superior to that of ribavirin (the positive control, IC50 = 11.43 µM). Moreover, 38a also has inhibitory activity against coronavirus 229E with an IC50 of 30.82 µM. In addition, compounds 42 and 46f exhibit an 82% inhibition rate against vesicular stomatitis virus at a concentration of 20 µM and hardly induce cytotoxicity in host cells. This work demonstrates the feasibility of designing nucleoside analogues with "ring-opening" bases and suggests the "ring-opening" nucleosides may have greater polarity, and designing prodrugs is an important aspect of optimizing their antiviral activity. Future research should focus on enhancing the conformational restriction of open-loop bases to mimic Watson-Crick base pairing better and improve antiviral activity.


Assuntos
Antivirais , Desenho de Fármacos , Nucleosídeos , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Nucleosídeos/química , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Animais , Células Madin Darby de Rim Canino , Cães , Relação Estrutura-Atividade
17.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2136-2149, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044580

RESUMO

African swine fever virus (ASFV), as a contagious viral pathogen, is responsible for the occurrence of African swine fever (ASF), a rapidly spreading and highly lethal disease. Since ASFV was introduced into China in 2018, it has been quickly spread to many provinces, which brought great challenges to the pig industry in China. Due to the limited knowledge about the pathogenesis of ASFV, neither vaccines nor antiviral drugs are available. We have found that ASFV infection can induce oxidative stress responses in cells, and DNA repair enzymes play a key role in this process. This study employed RNA interference, RT-qPCR, Western blotting, Hemadsorption (HAD), and flow cytometry to investigate the effects of the inhibitors of DNA repair enzymes OGG1 and MTH1 on ASFV replication and evaluated the anti-ASFV effects of the inhibitors. This study provides reference for the development of anti-viral drugs.


Assuntos
Vírus da Febre Suína Africana , DNA Glicosilases , Monoéster Fosfórico Hidrolases , Replicação Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/efeitos dos fármacos , Animais , Replicação Viral/efeitos dos fármacos , Suínos , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Febre Suína Africana/virologia , Antivirais/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Vero
18.
Biochem Pharmacol ; : 116448, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043335

RESUMO

Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g., human immunodeficiency virus) and DNA virus (e.g., adeno-, papilloma-, herpes- and poxvirus) infections. If properly assessed and/or optimized, some potent acyclic nucleoside phosphonates can be possibly applied in the control of current and emerging infectious diseases.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39079772

RESUMO

BACKGROUND: The ongoing, observational BICSTaR (BICtegravir Single Tablet Regimen) cohort study is evaluating real-world effectiveness and safety of bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) in people with HIV across 14 countries over 24 months. We present 12-month data from the BICSTaR Asia cohort. METHODS: Data were pooled from retrospective and prospective cohorts of antiretroviral therapy (ART)-naïve (hereafter, TN) and ART-experienced (hereafter, TE) people with HIV (aged ≥21 years) receiving B/F/TAF in routine clinical care in the Republic of Korea, Singapore, and Taiwan. Analyses included effectiveness (primary endpoint: HIV-1 RNA <50 copies/ml, missing = excluded analysis), CD4 count, CD4/CD8 ratio, safety, treatment persistence, and patient-reported outcomes (prospective group). RESULTS: The analysis population included 328 participants (80 retrospective, 248 prospective; 65 TN, 263 TE). Participants were predominantly male (96.9% TN, 93.2% TE) with ≥1 comorbidity (52.3% TN, 57.8% TE); median age (years) was 31 (TN) and 42 (TE). Following 12 months of B/F/TAF, HIV-1 RNA was <50 copies/ml in 98.2% (54/55) of TN and 97.0% (227/234) of TE participants. Median (Q1, Q3) CD4 cell count increased by +187 (119, 291) cells/µl in the TN group (p < 0.001) and remained stable (+8 [-91, 110] cells/µl) in the TE group. B/F/TAF persistence was high in the prospective group, with 1/34 (2.9%) TN and 5/214 (2.3%) TE participants discontinuing treatment within 12 months. Drug-related adverse events occurred in 5.8% (19/328) of participants, leading to treatment discontinuation in 0.6% (2/328). CONCLUSIONS: Real-world evidence from BICSTaR supports the effectiveness, safety and tolerability of B/F/TAF in people with HIV in Asia.

20.
J Mol Evol ; 92(4): 449-466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39052031

RESUMO

Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.


Assuntos
Glicina , RNA , Termodinâmica , RNA/química , Glicina/análogos & derivados , Glicina/química , Origem da Vida , Evolução Química , Nucleosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA