Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39402883

RESUMO

This study proposes a novel model employing nonlinear ordinary differential equations to dissect HCV dynamics. Six distinct population groups are delineated: Susceptible, Treatment, Responder, Non-Responder, Cured, and Fibrosis. A detailed numerical analysis of this model was conducted, tracking the predicted trends over a span of 20 years. The primary objective of this analysis is to assess and confirm the model's predictive accuracy and its potential to supplant invasive diagnostic methods in monitoring the progression of liver fibrosis. By incorporating various control parameters, namely u1(t),u2(t), and u3(t), the model offers a nuanced perspective on disease progression and treatment outcomes. Parameter u1(t) modulates treatment-induced fibrosis progression, providing a crucial lever for mitigating treatment-related side effects. u2(t) reflects treatment effectiveness, capturing the proportion of responders within the treatment cohort. Meanwhile, u3(t) governs fibrosis progression in non-responders, shedding light on the disease's natural trajectory without effective treatment.

2.
Heliyon ; 10(19): e38112, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39416819

RESUMO

Cartilage has a limited intrinsic healing capacity. Hence, cartilage degradation and lesions pose a huge clinical challenge, particularly in an ageing society. Osteoarthritis impacts a significant number of the population and requires the development of repair and tissue engineering methods for hyaline articular cartilage. In this context, electrical stimulation has been investigated for more than 50 years already. Yet, no well-established clinical therapy to treat osteoarthritis by means of electrical stimulation exists. We argue that one reason is the lack of replicability of electrical stimulation devices from a technical perspective together with lacking hypotheses of the biophysical mechanism. Hence, first, the electrical stimulation studies reported in the context of cartilage tissue engineering with a special focus on technical details are summarized. Then, an experimental and numerical approach is discussed to make the electrical stimulation experiments replicable. Finally, biophysical hypotheses have been reviewed on the interaction of electric fields and cells that are relevant for cartilage tissue engineering. With that, the aim is to inspire future research to enable clinical electrical stimulation therapies to fight osteoarthritis.

3.
Med Phys ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341358

RESUMO

BACKGROUND: During magnetic resonance-guided focused ultrasound (MRgFUS) surgery for uterine fibroids, ablation of fibrous tissues in proximity to the hips and spine is challenging due to heating within the bone that can cause patients to experience pain and potentially damage nerves. This far-field bone heating limits the volume of fibroid tissue that is treatable via MRgFUS. PURPOSE: To investigate transducer module apodization for improving the ratio of focal-to-bone heating ( Δ T ratio $\Delta T_{\mathrm{ratio}}$ ) when targeting fibroid tissue close to the hips and spine, to enable MRgFUS treatments closer to the bone. METHODS: Acoustic and thermal simulations were performed using 3D magnetic resonance imaging (MRI)-derived anatomies of ten patients who underwent MRgFUS ablation for uterine fibroids using a low-frequency ( 0.5 MHz $0.5 \ \text{MHz}$ ) 6144-element flat fully-populated modular phased array system (Arrayus Technologies Inc., Burlington, Canada) at our institution as part of a larger clinical trial (NCT03323905). Transducer modules ( 64 elements $64 \ \text{elements}$ per module) whose beams intersected with no-pass zones delineated within the field were identified, their output power levels were reduced by varying blocking percentage levels, and the resulting temperature field distributions were evaluated across multiple sonications near the hip and spine bones in each patient. Acoustic and thermal simulations took approximately 20 min $20 \ \text{min}$ ( 7 min $7 \ \text{min}$ ) and 1 min $1 \ \text{min}$ ( 30 s $30 \ \text{s}$ ) to run for a single near-spine (near-hip) target, respectively. RESULTS: For all simulated sonications, transducer module blocking improved Δ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no blocking case. In just over half of sonications, full module blocking maximized Δ T ratio $\Delta T_{\mathrm{ratio}}$ (increase of 82% ± $\pm$ 38% in 50% of hip targets and 49% ± $\pm$ 30% in 62% of spine targets vs. no blocking; mean ± SD), at the cost of more diffuse focusing (focal heating volumes increased by 13% ± 13% for hip targets and 39% ± 27% for spine targets) and thus requiring elevated total (hip: 6% ± 17%, spine: 37% ± 17%) and peak module-wise (hip: 65% ± 36%, spine: 101% ± 56%) acoustic power levels to achieve equivalent focal heating as the no blocking control case. In the remaining sonications, partial module blocking provided further improvements in both Δ T ratio $\Delta T_{\mathrm{ratio}}$ (increased by 29% ± 25% in the hip and 15% ± 12% in the spine) and focal heating volume (decrease of 20% ± 10% in the hip and 34% ± 17% in the spine) relative to the full blocking case. The optimal blocking percentage value was dependent on the specific patient geometry and target location of interest. Although not all individual target locations saw the benefit, element-wise phase aberration corrections improved the average Δ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no correction case (increase of 52% ± 47% in the hip, 35% ± 24% in the spine) and impacted the optimal blocking percentage value. Transducer module blocking enabled ablative treatments to be carried out closer to both hip and spine without overheating or damaging the bone (no blocking: 42 ± 1 mm $42\pm 1 \ \text{mm}$ / 17 ± 2 mm $17 \pm 2 \ \text{mm}$ , full blocking: 38 ± 1 mm $38\pm 1 \ \text{mm}$ / 8 ± 1 mm $8\pm 1 \ \text{mm}$ , optimal partial blocking: 36 ± 1 mm $36\pm 1 \ \text{mm}$ / 7 ± 1 mm $7\pm 1 \ \text{mm}$ for hip/spine). CONCLUSION: The proposed transducer apodization scheme shows promise for improving MRgFUS treatments of uterine fibroids, and may ultimately increase the effective treatment envelope of MRgFUS surgery in the body by enabling tissue ablation closer to bony structures.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39262168

RESUMO

This paper presents a one-dimensional model that describes fluid flow in lymphangions, the segments of lymphatic vessels between valves, using quasilinear hyperbolic systems. The model incorporates a phenomenological pressure-cross-sectional area relationship based on existing literature. Numerical solutions of the differential equations align with known results, offering insights into lymphatic flow dynamics. This model enhances the understanding of lymph movement through the lymphatic system, driven by lymphangion contractions.

5.
Sci Rep ; 14(1): 21853, 2024 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300092

RESUMO

A fractional model for the kinetics of hepatitis B transmission was developed. The hepatitis B virus significantly affects the world's economic and health systems. Acute and chronic carrier phases play a crucial part in the spread of the HBV infection. The Hepatitis B infection can be spread by chronic carriers even though they show no symptoms. In this article, we looked into the Hepatitis B virus's various stages of infection-related transmission and built a nonlinear epidemic. Then, a fractional hepatitis B virus model using a Caputo derivative and vaccine effects is created. First, we determined the proposed model's essential reproductive value and equilibria. With the aid of Fixed Point Theory, a qualitative analysis of the problem's approximative root has been produced. The Adams-Bashforth predictor-corrector scheme is used to aid in the iterative approximate technique's evaluation of the fractional system under consideration that has the Caputo derivative. In the final section, a graphical representation compares various noninteger orders and displays the discovered scheme findings. In this study, we've utilized Artificial Neural Network (ANN) techniques to partition the dataset into three categories: training, testing, and validation. Our analysis delves deep into each category, comprehensively examining the dataset's characteristics and behaviors within these divisions. The study comprehensively analyzes the fractional HBV transmission model, incorporating both mathematical and computational approaches. The findings contribute to a better understanding of the dynamics of HBV infection and can inform the development of effective public health interventions.


Assuntos
Vírus da Hepatite B , Hepatite B , Redes Neurais de Computação , Humanos , Hepatite B/transmissão , Hepatite B/epidemiologia , Hepatite B/virologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-39320689

RESUMO

Lymph Nodes (LNs) are crucial to the immune and lymphatic systems, filtering harmful substances and regulating lymph transport. LNs consist of a lymphoid compartment (LC) that forms a porous bulk region, and a subcapsular sinus (SCS), which is a free-fluid region. Mathematical and mechanical challenges arise in understanding lymph flow dynamics. The highly vascularized lymph node connects the lymphatic and blood systems, emphasizing its essential role in maintaining the fluid balance in the body. In this work, we describe a mathematical model in a steady setting to describe the lymph transport in a lymph node. We couple the fluid flow in the SCS governed by an incompressible Stokes equation with the fluid flow in LC, described by a model obtained by means of asymptotic homogenisation technique, taking into account the multiscale nature of the node and the fluid exchange with the blood vessels inside it. We solve this model using numerical simulations and we analyze the lymph transport inside the node to elucidate its regulatory mechanisms and significance. Our results highlight the crucial role of the microstructure of the lymph node in regularising its fluid balance. These results can pave the way to a better understanding of the mechanisms underlying the lymph node's multiscale functionalities which can be significantly affected by specific physiological and pathological conditions, such as those characterising malignant tissues.

7.
Infect Dis Model ; 9(4): 1301-1328, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39309400

RESUMO

During an epidemic, such as the COVID-19 pandemic, policy-makers are faced with the decision of implementing effective, yet socioeconomically costly intervention strategies, such as school and workplace closure, physical distancing, etc. In this study, we propose a rigorous definition of epidemiological strategies. In addition, we develop a scheme for comparing certain epidemiological strategies, with the goal of providing policy-makers with a tool for their systematic comparison. Then, we put the suggested scheme to the test by employing an age-based epidemiological compartment model introduced in Bitsouni et al. (2024), coupled with data from the literature, in order to compare the effectiveness of age-based and horizontal interventions. In general, our findings suggest that these two are comparable, mainly at a low or medium level of intensity.

8.
Adv Sci (Weinh) ; : e2407107, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206745

RESUMO

The unsatisfactory mechanical performance at high temperatures limits the broad application of 3D-printed aluminum alloy structures in extreme environments. This study investigates the mechanical behavior of 4 different lattice cell structures in high-temperature environments using AlSi12Fe2.5Ni3Mn4, a newly developed, heat-resistant, high-strength, and printable alloy. A novel Antisymmetric anti-Buckling Lattice Cell (ASLC-B) based on a unique rotation reflection multistage design is developed. Micro-CT (Computed Tomography) and SEM (Scanning Electron Microscope) analyses revealed a smooth surface and dense interior with an average porosity of less than 0.454%. Quasi-static compression tests at 25, 100, and 200 °C showed that ASLC-B outperformed the other 3 lattice types in load-bearing capacity, energy absorption, and heat transfer efficiency. Specifically, the ASLC-B demonstrated a 51.56% and 44.14% increase in compression load-bearing capacity at 100 and 200 °C compared to ASLC-B(AlSi10Mg), highlighting its excellent high-temperature mechanical properties. A numerical model based on the Johnson-Cook constitutive relationship revealed the damage failure mechanisms, showing ASLC-B's effectiveness in preventing buckling, enhancing load-transfer efficiency, and reducing stress concentrations. This study emphasizes the importance of improving energy absorption and mechanical performance for structural optimization in extreme conditions. The ASLC-B design offers significant advancements in maintaining structural integrity and performance under high temperatures.

9.
Sci Rep ; 14(1): 20019, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198507

RESUMO

In the current study, we employ the novel fractal-fractional operator in the Atangana-Baleanu sense to investigate the dynamics of an interacting phytoplankton species model. Initially, we utilize the Picard-Lindelöf theorem to validate the uniqueness and existence of solutions for the model. We then explore equilibrium points within the phytoplankton model and conduct Hyers-Ulam stability analysis. Additionally, we present a numerical scheme utilizing the Newton polynomial to validate our analytical findings. Numerical simulations illustrate the dynamical behavior of the model across various fractal and fractional parameter values, visualized through graphical representations. Our simulations reveal that the stability of equilibrium points is not significantly impacted with the long-term memory effect, which is characterized by fractal-fractional order values. However, an increase in fractal-fractional parameters accelerates the convergence of solutions to their intended equilibrium states.

10.
Environ Pollut ; 362: 124820, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197641

RESUMO

To analyze the surface cumulative mass of VOCs from residual sources in dual-media fractured rocks and assess environmental health risks, complex 3D numerical models were constructed. These models comprehensively considered fracture-rock interactions, density-driven effects, and surface pressure fluctuations. The investigation identified the key control factors affecting surface cumulative mass, including the fracture aperture, pollutant source location, fracture density, and so on. Additionally, a regression-based general surrogate model was established using the obtained representative dataset. According to U.S. EPA's Respiratory Inhalation Reference Concentrations, the cumulative mass of CH2ClCHCl2 in one day for one-third of the model exceeds the concentration limit. Benzene and TCE concentrations reached 29 and 740 times the reference limits, significantly impacting air quality and health. Surrogate model analysis showed that in the worst-case scenario, 1 min's surface cumulative mass could cause Benzene concentrations to exceed the limit by 57 times. The implications of the study lies in reminding us that even after groundwater remediation in the saturated zone, residual VOCs in the capillary zones can still significantly impact surface environmental health risks. This investigation also presents an effective framework that integrates complex, time-consuming numerical modeling with simple, efficient statistical modeling to predict concerned variables and their uncertainties. This study provides a reference basis for the control of environmental pollution pertaining to VOCs volatilization from buried capillary zones at specific depths.

11.
Polymers (Basel) ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125212

RESUMO

A comprehensive modeling framework for the thermoforming of polymer matrix woven laminate composite was developed. Two numerical indicators, the slip path length and traction magnitude, have been identified to be positively correlated to matrix smearing and wrinkling defects. The material model has been calibrated with picture-frame experimental results, and the prediction accuracy for intra-ply shear and thickness distribution was examined with measurements of the physically formed parts. Specifically, thickness prediction for most locations on the formed parts was accurate within an 11.6% error margin. However, at two points with significant intra-ply shear, the prediction errors increased to around 20%. Finally, a parametric study was conducted to determine the relationship between various process parameters and the quality of the formed part. For the trapezoidal part, orienting the laminate at 45 degrees to the mold axis reduces the likelihood of matrix smear and wrinkling defects. Although this laminate orientation yielded a greater spatial variation in part thickness, the thickness deviation is lower than that for the 0-degree orientation case. Two forming analyses were conducted with ramp rates of 25 mm/s and 80 mm/s to match the equipment's operational limits. It was observed that higher forming rates led to a greater likelihood of defects, as evidenced by a 15% and 10% increase in the formed part areas with longer slip paths and higher traction magnitudes, respectively. It was discovered that shallower molds benefit from faster ramp rates, while deeper molds require slower rates to manage extensive shearing, stretching and bending. Faster forming rates lead to smaller thickness increases at high intra-ply shear regions, indicating a shift from intra-ply shear to out-of-plane bending due to the visco-plastic effect of the molten laminate and can negatively impact part quality. Lastly, it was shown that a well-conceived strategy using darts could improve the part quality by reducing the magnitude of the defect indicators.

12.
Sci Rep ; 14(1): 16125, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997310

RESUMO

The practical applications of underwater optical devices, such as cameras or sensors, often suffer from widespread surface biofouling. Current antifouling techniques are primarily hindered by low efficiency, poor compatibility, as well as environmental pollution issues. This paper presents a transparent electrode coating as antifouling system of underwater optics as potential substitute for alternating current electrokinetic (ACEK)-based systems. A strong-coupling model is established to predict the Joule heating induced fluid flows and the negative dielectrophoretic (nDEP) effect for mobilizing organisms or deposited sediments on optic surfaces. The performance of the proposed antifouling system is numerically evaluated through simulations of electrostatic, fluid and temperature fields as well as trajectories of submicron particles, which is then experimentally verified and found to be in good agreement. A parametric study revealed that the degree of electrodes asymmetry is the key factor affecting the flow pattern and therefore the overall performance of the system. This ACEK-based universal strategy is expected to shed light on designing high performance and non-toxic platforms toward energy-efficient surface antifouling applications of underwater optics.

13.
Materials (Basel) ; 17(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063840

RESUMO

Cracks in rock and concrete have a great adverse effect on the stability of engineering structures; however, there are few studies on X-shaped fissures which widely exist in rock and concrete structures. Based on this background, three-point bending fracture tests of SCB specimens containing X-shaped fissures are carried out. The momentum equations in the SPH method are improved, and the crack propagations of SCB specimens under three-point bending are simulated. The results show that cracks grow simply along the vertical direction in the sample with no X-shaped fissures, and the existence of an X-shaped fissure changes the crack growth path and final failure modes of the SCB samples. The crack propagation simulation results are consistent with the experimental results, which verifies the rationality of the improved SPH method. The load-displacement curves mainly present three typical stages: the initial compaction stage, linear elastic deformation stage, and failure stage. The peak load decreases first then increases with an increase in eccentricity. With an increase in X-shaped fissure length and decrease in X-shaped fissure angle, the peak load decreases. The damage counts remain at 0 at the initial loading stage, corresponding to the initial compaction stage and the linear elastic deformation stage, and increase sharply at the later loading stage, corresponding to the failure stage, which is consistent with the experimental results. The influence mechanisms of X-shaped fissures on the crack propagation paths are discussed; the existence of different X-shaped fissure morphologies aggravate the tensile stress concentration at specific positions, leading to different crack propagation modes in the experiments. The research results can provide a certain reference for understanding the failure mechanisms of engineering structures containing X-shaped fissures and promote the applications of the SPH method into the simulations of cross-fissure crack propagations.

14.
Sci Rep ; 14(1): 17237, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060276

RESUMO

This study introduces a fractional order model to investigate the dynamics of polio disease spread, focusing on its significance, unique results, and conclusions. We emphasize the importance of understanding polio transmission dynamics and propose a novel approach using a fractional order model with an exponential decay kernel. Through rigorous analysis, including existence and stability assessment applying the Caputo Fabrizio fractional operator, we derive key insights into the disease dynamics. Our findings reveal distinct disease-free equilibrium (DFE) and endemic equilibrium (EE) points, shedding light on the disease's stability. Furthermore, graphical representations and numerical simulations demonstrate the behavior of the disease under various parameter values, enhancing our understanding of polio transmission dynamics. In conclusion, this study offers valuable insights into the spread of polio and contributes to the broader understanding of infectious disease dynamics.


Assuntos
Poliomielite , Poliomielite/epidemiologia , Poliomielite/virologia , Humanos , Poliovirus , Simulação por Computador , Modelos Teóricos , Modelos Epidemiológicos
15.
Ultrasonics ; 142: 107397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986247

RESUMO

Monitoring the microstructural change in cementitious materials during hydration is an essential but challenging task. Therefore, a non-invasive and sophisticated technique is warranted to understand the microscopic behaviour of the multiphase cementitious materials (where the length scale of the constituents varies from centimeters to micrometers) in different stages of hydration. Due to exothermic hydration reactions, different hydration products start to evolve with individual mechanical properties. In concrete, an interface transition zone (ITZ) appears between the aggregate surface and paste matrix, which influences the overall properties of concrete material. In the present research, 1) several wave characteristics, such as wave velocity, energy distribution, and signal phase are found out using Ultrasonic Pulse Velocity (UPV), Wavelet Packet Energy (WPE) and Hilbert Transform (HT) methods, to monitor the hydration mechanism (1d-28d) in cement-based materials with two levels of heterogeneities (cement paste and concrete, representing microscale and mesoscale, respectively). Also, the unique nonlinear behaviour is studied in the frequency domain using the promising Sideband Energy Ratio (SER) and Sideband Peak Count Index (SPC-I) methods. 2) Numerical simulations are carried out to understand the wave interaction in the developing microstructure. A discretized microstructure of cement shows microscopic details of each phase at any instant of hydration (e.g., formation stage and after complete maturity level). The experimental and numerical investigations on the characteristics of the nonlinear ultrasonic wave propagation show the impact of microstructural development of multi-scale cementitious materials during hydration.

16.
J Magn Reson ; 365: 107740, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39047540

RESUMO

The site-specific signal enhancement provided by parahydrogen induced polarization (PHIP) may be combined with magnetic resonance imaging (MRI) to study chemical and biomolecular processes. However, imaging of hydrogen nuclei (1H) is hampered by background signals arising from the presence of thermally polarized nuclei. Additionally, fast imaging sequences are commonly based on multiple radio-frequency pulses, where the signals resulting from PHIP oscillate due to the evolution with a J-coupling Hamiltonian. In this article, an innovative imaging scheme for single-scan MRI is presented that effectively detects hyperpolarized components while simultaneously canceling out thermal contributions. This method is based on the quenching of inherent oscillations of PHIP-originated signals due to J-couplings during the multipulse sequence and the suppression of thermal signals by spin dynamics and a tailored restructuring of the k-space. A series of numerical simulations on specific two- and three-spin systems serve to support the feasibility of the approach. Furthermore, this theoretical study demonstrates the potential of combining hyperpolarization and long-lived states (PHIP and LLS) in the selected molecules, which could be seen as a preliminary step towards the development of fast imaging techniques, for example in the field of biomolecular research.

17.
J R Soc Interface ; 21(215): 20230729, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835246

RESUMO

In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of in silico 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.


Assuntos
Eletrocardiografia , Cardiopatias Congênitas , Modelos Cardiovasculares , Humanos , Cardiopatias Congênitas/fisiopatologia , Eletrocardiografia/métodos , Criança
18.
Chemosphere ; 362: 142540, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851514

RESUMO

The rate of mass transfer of lower molecular weight hydrocarbons (naphtha) from bitumen drops in mature fine tailings of oil sand tailings ponds (OSTPs) may control their bioavailability and the associated rate of GHG production. Experiments were conducted using bitumen drops spiked with o-xylene and 1-methylnaphthalene to determine the mass transfer rate of these naphtha components from bitumen drops. The results were compared to simulations using a multi-component numerical model that accounted for transport in the drop and across the oil-water interface. The results demonstrate rate-limited mass transfer, with aqueous concentrations after 60 days of dissolution that were different than those in equilibrium with the initial drop composition (less for o-xylene and greater for 1-methylnaphthalene). The simulations suggest that mole fractions were unchanged at the center of the drop, resulting in concentration gradients out to the oil-water interface. Numerical simulations conducted using different drop sizes and bitumen viscosities also suggest the potential for persistent naphtha dissolution, where the time required to deplete 80% of the o-xylene and 1-methylnaphthalene mass from an oil drop was estimated to be on the order of months to years for mm-sized drops, and years to decades for cm-sized drops assuming instantaneous biodegradation in the aqueous phase surrounding the bitumen.


Assuntos
Hidrocarbonetos , Solventes , Hidrocarbonetos/química , Solventes/química , Difusão , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Campos de Petróleo e Gás/química , Xilenos/química , Lagoas/química , Solubilidade
19.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894253

RESUMO

In this paper, piezoceramic-based excitation of shear horizontal waves is investigated. A thickness-shear d15 piezoceramic transducer is modeled using the finite-element method. The major focus is on the directivity and excitability of the shear horizontal fundamental mode with respect to the maximization of excited shear and minimization of Lamb wave modes. The results show that the geometry of the transducer has more effect on the directivity than on the excitability of the analyzed actuator. Numerically simulated results are validated experimentally. The experimental results show that transducer bonding significantly affects the directivity and amplitude of the excited modes. In conclusion, when the selected actuator is used for shear excitation, the best solution is to tailor the transducer in such a way that at the resonant frequency the desired directivity is achieved.

20.
Environ Geochem Health ; 46(7): 227, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849675

RESUMO

Leakage accidents of buried pipelines have become increasingly common due to the prolonged service of some pipelines which have been in use for more than 150 years. Therefore, there is an urgent need for accurate prediction of pollution scope to aid in the development of emergency remediation strategies. This study investigated the distribution of a light non-aqueous phase liquid in soils containing gas and water through numerical simulations and laboratory experiments. Firstly, a three-dimensional porous medium model was established using ANSYS FLUENT, and for the first time, the distribution of gas and groundwater in soil environments was simulated in the model. Subsequently, the distribution of the three phases of diesel, gas, and water in soil was studied with different leakage velocities and it was found that the leakage velocity played a significant role in the distribution. The areas of diesel in soils at 60 min were 0.112 m2, 0.194 m2, 0.217 m2, and 0.252 m2, with corresponding volumes of 0.028 m3, 0.070 m3, 0.086 m3, and 0.106 m3, respectively, for leakage velocities of 1.3 m/s, 3.4 m/s, 4.6 m/s, and 4.9 m/s. Calculation formulas for distribution areas and volumes were also developed to aid in future prevention and control strategies under different leakage velocities. The study also compared the distribution areas and volumes of diesel in soils with and without groundwater, and it was found that distribution scopes were larger in soils containing groundwater due to capillary force. In order to validate the accuracy of the numerical simulation, laboratory experiments were conducted to study the diffusion of oil, gas, and water under different leakage velocities. The results showed good agreement between the experiments and the simulations. The research findings are of great significance for preventing soil pollution and provide a theoretical basis for developing scientifically sound soil remediation strategies.


Assuntos
Água Subterrânea , Poluentes do Solo , Solo , Água Subterrânea/química , Poluentes do Solo/análise , Solo/química , Simulação por Computador , Poluentes Químicos da Água/análise , Modelos Teóricos , Gases , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA