Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Environ Res ; 259: 119521, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960350

RESUMO

Tetracycline (TC) and ciprofloxacin (CF) induce a synergistic effect that alters the biochemical composition, leading to a decrease in the growth and photosynthetic efficiency of microalgae. But the current study provides a novel insight into stress-inducing techniques that trigger a change in macromolecules, leading to an increase in the bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. The study revealed that in a closed system, a light intensity of 167 µmol/m2/s causes 93.5% degradation of TC and 16% degradation of CF after 7 days of exposure, hence availing the products for utilization by C. variabilis biofilm. The resistance to pathogens invasion was linked to 85% and 40% increase in the expression level of photosystem II oxygen-evolving enhancer protein 3 (PsbQ), and mitogen activated kinase (MAK) respectively. The results also indicate that a surge in light intensity triggers 49% increase in the expression level of lysophosphatidylcholine (LPC) (18:2), which is an important lipidomics that can easily undergo transesterification into bioenergy. The thermogravimetric result indicates that the biomass sample of C. variabilis biofilm cultivated under light intensity of 167 µmol/m2/s produces a higher residual mass of 45.5% and 57.5 under air and inert conditions, respectively. The Fourier transform infrared (FTIR) indicates a slight shift in the major functional groups, while the energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) indicate clear differences in the morphology and elemental composition of the biofilm biomass in support of the increase bioenergy potential of C. variabilis biofilm. The current study provides a vital understanding of a innovative method of cultivation of C. variabilis biofilm, which is resistant to pathogens and controls the balance between fatty acid and TAG synthesis leading to surge in bioenergy potential and environmental sustainability.

2.
Glob Chang Biol ; 30(7): e17405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973563

RESUMO

Anthropogenic activities have raised nitrogen (N) input worldwide with profound implications for soil carbon (C) cycling in ecosystems. The specific impacts of N input on soil organic matter (SOM) pools differing in microbial availability remain debatable. For the first time, we used a much-improved approach by effectively combining the 13C natural abundance in SOM with 21 years of C3-C4 vegetation conversion and long-term incubation. This allows to distinguish the impact of N input on SOM pools with various turnover times. We found that N input reduced the mineralization of all SOM pools, with labile pools having greater sensitivity to N than stable ones. The suppression in SOM mineralization was notably higher in the very labile pool (18%-52%) than the labile and stable (11%-47%) and the very stable pool (3%-21%) compared to that in the unfertilized control soil. The very labile C pool made a strong contribution (up to 60%) to total CO2 release and also contributed to 74%-96% of suppressed CO2 with N input. This suppression of SOM mineralization by N was initially attributed to the decreased microbial biomass and soil functions. Over the long-term, the shift in bacterial community toward Proteobacteria and reduction in functional genes for labile C degradation were the primary drivers. In conclusion, the higher the availability of the SOM pools, the stronger the suppression of their mineralization by N input. Labile SOM pools are highly sensitive to N availability and may hold a greater potential for C sequestration under N input at global scale.


Assuntos
Carbono , Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Nitrogênio/metabolismo , Nitrogênio/análise , Carbono/metabolismo , Carbono/análise , Ciclo do Carbono , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Biomassa
3.
Front Plant Sci ; 15: 1411767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872881

RESUMO

Introduction: Freshwater ecosystems are susceptible to invasion by alien macrophytes due to their connectivity and various plant dispersal vectors. These ecosystems often experience anthropogenic nutrient enrichment, favouring invasive species that efficiently exploit these resources. Propagule pressure (reflecting the quantity of introduced individuals) and habitat invasibility are key determinants of invasion success. Moreover, the enemy release hypothesis predicts that escape from natural enemies, such as herbivores, allows alien species to invest more resources to growth and reproduction rather than defense, enhancing their invasive potential. Yet, the combined impact of propagule pressure, herbivory, and nutrient enrichment on the competitive dynamics between invasive alien macrophytes and native macrophyte communities is not well understood due to a paucity of studies. Methods: We conducted a full factorial mesocosm experiment to explore the individual and combined effects of herbivory, nutrient levels, propagule pressure, and competition on the invasion success of the alien macrophyte Myriophyllum aquaticum into a native macrophyte community comprising Vallisneria natans, Hydrilla verticillata, and Myriophyllum spicatum. This setup included varying M. aquaticum densities (low vs. high, simulating low and high propagule pressures), two levels of herbivory by the native snail Lymnaea stagnalis (herbivory vs no-herbivory), and two nutrient conditions (low vs. high). Myriophyllum aquaticum was also grown separately at both densities without competition from native macrophytes. Results: The invasive alien macrophyte M. aquaticum produced the highest shoot and total biomass when simultaneously subjected to conditions of high-density intraspecific competition, no herbivory, and low-nutrient availability treatments. Moreover, a high propagule pressure of M. aquaticum significantly reduced the growth of the native macrophyte community in nutrient-rich conditions, but this effect was not observed in nutrient-poor conditions. Discussion: These findings indicate that M. aquaticum has adaptive traits enabling it to flourish in the absence of herbivory (supporting the enemy release hypothesis) and in challenging environments such as intense intraspecific competition and low nutrient availability. Additionally, the findings demonstrate that when present in large numbers, M. aquaticum can significantly inhibit the growth of native macrophyte communities, particularly in nutrient-rich environments. Consequently, reducing the propagule pressure of M. aquaticum could help control its spread and mitigate its ecological impact. Overall, these findings emphasize that the growth and impacts of invasive alien plants can vary across different habitat conditions and is shaped by the interplay of biotic and abiotic factors.

4.
Sci Total Environ ; 935: 173424, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782284

RESUMO

Due to the natural biochar aging, the improvement of soil quality and immobilization of soil pollutants achieved by biochar may change; understanding the dynamic evolution of the in situ performance of biochar in these roles is essential to discuss the long-term sustainability of biochar remediation. Therefore, in this study, combined biochar from co-pyrolysis of pig manure and invasive Japanese knotweed - P1J1, as well as pure pig manure - PM - and pure Japanese knotweed - JK - derived biochar were applied to investigate their remediation performance in a high As- and Pb-polluted soil with prolonged incubation periods (up to 360 days). Biochar application, especially P1J1 and PM, initially promoted soil pH, dissolved organic carbon, and EC, but the improvements were not constant through time. The JK-treated soil exhibited the highest increase of soil organic matter (OM), followed by P1J1 and then PM, and OM did not change with aging. Biochar, especially P1J1, was a comprehensive nutrient source of Ca, K, Mg, and P to improve soil fertility. However, while soluble cationic Ca, K, and Mg increased with time, anionic P decreased over time, indicating that continuous P availability might not be guaranteed with the aging process. The total microorganism content declined with time; adding biochars slowed down this tendency, which was more remarkable at the later incubation stage. Biochar significantly impeded soil Pb mobility but mobilized soil As, especially in PM- and P1J1-treated soils. However, mobilized As gradually re-fixed in the long run; meanwhile, the excellent Pb immobilization achieved by biochars was slightly reduced with time. The findings of this study offer fresh insights into the alterations in metal(loid)s mobility over an extended duration, suggesting that the potential mobilization risk of As is reduced while Pb mobility slightly increases over time.


Assuntos
Arsênio , Biodegradação Ambiental , Chumbo , Mineração , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Esterco , Animais , Suínos , Pirólise , Chumbo/análise , Chumbo/química , Arsênio/análise , Arsênio/química , Reynoutria
5.
Nutr Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812084

RESUMO

Intermittent fasting (IF) has proven to be a feasible dietary intervention for the wider population. The recent increase in IF clinical trials highlights its potential effects on health, including changes in body composition, cardiometabolic status, and aging. Although IF may have clinical applications in different populations, studies suggest there may be sex-specific responses in parameters such as body composition or glucose and lipid metabolism. Here, the existing literature on IF clinical trials is summarized, the application of IF in both disease prevention and management is discussed, and potential disparities in response to this type of diet between men and women are assessed. Moreover, the potential mechanisms that may be contributing to the sexually dimorphic response, such as age, body composition, tissue distribution, or sex hormones are investigated. This review underscores the need to further study these sex-specific responses to IF to define the most effective time frames and length of fasting periods for men and women. Tailoring IF to specific populations with a personalized approach may help achieve its full potential as a lifestyle intervention with clinical benefits.

7.
Ecol Evol ; 14(4): e11167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623521

RESUMO

The savanna ecosystem is dominated by grasses, which are a key food source for many species of grazing animals. This relationship creates a diverse mosaic of habitats and contributes to the high grass species richness of savannas. However, how grazing interacts with environmental conditions in determining grass species richness and abundance in savannas is still insufficiently understood. In the Kruger National Park, South Africa, we recorded grass species and estimated their covers in 60 plots 50 × 50 m in size, accounting for varying proximity to water and different bedrocks. To achieve this, we located plots (i) near perennial rivers, near seasonal rivers, and on crests that are distant from all water sources and (ii) on nutrient-rich basaltic and nutrient-poor granitic bedrock. The presence and abundance of large herbivores were recorded by 60 camera traps located in the same plots. Grass cover was higher at crests and seasonal rivers than at perennial rivers and on basalts than on granites. The relationship between grass species richness and herbivore abundance or species richness was positive at crests, while that between grass species richness and herbivore species richness was negative at seasonal rivers. We found no support for controlling the dominance of grasses by herbivores in crests, but herbivore-induced microsite heterogeneity may account for high grass species richness there. In contrast, the decrease in grass species richness with herbivore species richness at seasonal rivers indicates that the strong grazing pressure over-rides the resistance of some species to grazing and trampling. We suggest that the relationships between grasses and herbivores may work in both directions, but the relationship is habitat-dependent, so that in less productive environments, the effect of herbivores on vegetation prevails, while in more productive environments along rivers the effect of vegetation and water supply on herbivores is more important.

8.
Sci Total Environ ; 928: 172259, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631646

RESUMO

The reuse of treated wastewater (TWW) in agriculture for crop irrigation is desirable. Crop responses to irrigation with TWW depend on the characteristics of TWW and on intrinsic and extrinsic soil properties. The aim of this study was to assess the response of tomato (Solanum lycopersicum L.) cultivated in five different soils to irrigation with TWW, compared to tap water (TAP) and an inorganic NPK solution (IFW). In addition, since soil microbiota play many important roles in plant growth, a metataxonomic analysis was performed to reveal the prokaryotic community structures of TAP, TWW and IFW treated soil, respectively. A 56-days pot experiment was carried out. Plant biometric parameters, and chemical, biochemical and microbiological properties of different soils were investigated. Shoot and root dry and fresh weights, as well as plant height, were the highest in plants irrigated with IFW followed by those irrigated with TWW, and finally with TAP water. Plant biometric parameters were positively affected by soil total organic carbon (TOC) and nitrogen (TN). Electrical conductivity was increased by TWW and IFW, being such an increase proportional to clay and TOC. Soil available P was not affected by TWW, whereas mineral N increased following their application. Total microbial biomass, as well as, main microbial groups were positively affected by TOC and TN, and increased according to the following order: IFW > TWW > TAP. However, the fungi-to-bacteria ratio was lowered in soil irrigated with TWW because of its adverse effect on fungi. The germicidal effect of sodium hypochlorite on soil microorganisms was affected by soil pH. Nutrients supplied by TWW are not sufficient to meet the whole nutrients requirement of tomato, thus integration by fertilization is required. Bacteria were more stimulated than fungi by TWW, thus leading to a lower fungi-to-bacteria ratio. Interestingly, IFW and TWW treatment led to an increased abundance of Proteobacteria and Acidobacteria phyla and Balneimonas, Rubrobacter, and Steroidobacter genera. This soil microbiota structure modulation paralleled a general decrement of fungi versus bacteria abundance ratio, the increment of electrical conductivity and nitrogen content of soil and an improvement of tomato growth. Finally, the potential adverse effect of TWW added with sodium chloride on soil microorganisms depends on soil pH.


Assuntos
Irrigação Agrícola , Microbiota , Microbiologia do Solo , Solo , Solanum lycopersicum , Eliminação de Resíduos Líquidos , Águas Residuárias , Solo/química , Irrigação Agrícola/métodos , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/análise , Agricultura/métodos
9.
Plant Physiol Biochem ; 210: 108602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608506

RESUMO

Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.


Assuntos
Cálcio , Solo , Cálcio/metabolismo , Produtos Agrícolas , Fertilizantes , Concentração de Íons de Hidrogênio , Fenômenos Fisiológicos Vegetais , Solo/química
10.
Sci Rep ; 14(1): 8420, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600155

RESUMO

In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.


Assuntos
Carbono , Saccharum , Carbono/análise , Solo/química , Celulose , Carvão Vegetal/química , Nutrientes , Índia
11.
J Exp Bot ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551389

RESUMO

Nutrient availability profoundly influences plant root system architecture, which critically determines crop productivity. While Arabidopsis has provided important insights into the genetic responses to nutrient deficiency, translating this knowledge to crops, particularly wheat, remains a subject of inquiry. Here, examining a diverse wheat population under varying nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) levels, we uncover a spectrum of root responses, spanning from growth inhibition to stimulation, highlighting genotype-specific strategies. Furthermore, we reveal a nuanced interplay between macronutrient deficiency (N, P, and K) and Fe availability, emphasizing the central role of Fe in modulating root architecture. Through genome-wide association mapping, we identify 11 quantitative trait loci underlying root traits under varying nutrient availabilities, including homologous genes previously validated in Arabidopsis, supporting our findings. In addition, utilizing transcriptomics, ROS imaging, and antioxidant treatment, we uncover that wheat root growth inhibition by nutrient deficiency is attributed to ROS accumulation, akin to the role of ROS in governing Arabidopsis root responses to nutrient deficiency. Therefore, our study reveals the conservation of molecular and physiological mechanisms between Arabidopsis and wheat to adjust root growth to nutrient availability, paving the way for targeted crop improvement strategies aimed at increasing nutrient use efficiency.

12.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475593

RESUMO

Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato (Solanum tuberosum L.) plants on the MMS-1 Mojave Mars regolith simulant, pure (R100) and mixed with green compost at 30% (R70C30), in a pot in a cold glasshouse with fertigation. For comparison purposes, we also grew plants on a fluvial sand, pure (S100) and amended with 30% of compost (S70C30), a volcanic soil (VS) and a red soil (RS). We studied the fertility dynamics in the substrates over time and the tuber nutritional quality. We investigated nutrient bioavailability and fertility indicators in the substrates and the quality of potato tubers. Plants completed the life cycle on R100 and produced scarce but nutritious tubers, despite many critical simulant properties. The compost supply enhanced the MMS-1 chemical/physical fertility and determined a higher tuber yield of better nutritional quality. This study demonstrated that a compost-amended Mars simulant could be a proper substrate to produce food crops in BLSSs, enabling it to provide similar ecosystem services of the studied terrestrial soils.

13.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449330

RESUMO

Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.


Assuntos
Caenorhabditis elegans , Alimentos , Animais , Humanos , Nutrientes , Fenótipo , Pesquisadores , Mamíferos
14.
J Econ Entomol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439735

RESUMO

An in vivo trial was conducted to determine the apparent digestibility coefficients (ADCs) of insect meals for rainbow trout, Oncorhynchus mykiss. Rainbow trout (approximately 370 g ±â€…23 g, mean ±â€…SD initial weight) were stocked 25 per tank into 400-liter tanks. Fish were fed a reference diet, or 1 of 5 test diets created by blending the reference diet in a 70:30 ratio (dry-weight basis) with menhaden fish meal (MFM), 2 house cricket (Acheta domesticus) meals (cricket A and cricket B), Galleria mellonella meal, and yellow mealworm (Tenebrio molitor) meal. Diets were assigned to 3 replicate tanks of fish and fed twice daily for 14 days prior to fecal collection. Ingredients, diets, and fecal matter were analyzed in duplicate for proximate, mineral, and amino acid composition. House cricket meals were 67.3% and 69.0% protein (CP) and 16.6% and 17.1% lipid (CL), for house cricket A and B, respectively. Yellow mealworm meal contained 56.5% CP and 27.7% CL, and G. mellonella larvae meal contained 32.5% CP and 54.2% CL. Protein ADCs were 78.9 for G. mellonella larvae meal, 78.0 for yellow mealworm meal, and 76.5 for house cricket A and not different from the MFM protein ADC of 76.6, while house cricket B protein ADC was 65.8 and was significantly lower than the MFM protein ADC (F = 7.39; df = 4,14; P = 0.0049). Together, these nutritional values suggest house crickets, and yellow mealworms show promise as alternative protein sources in salmonid feeds, with the potential of G. mellonella as an alternative lipid source.

15.
Sci Total Environ ; 919: 170920, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354797

RESUMO

Variation in biomass elemental composition of grassland plants may have important implications for ecosystem functioning in response to global change. However, relevant studies have mostly focused on variation of nitrogen (N) and phosphorus (P) concentrations in plant leaves, while few studies have evaluated other elements and plant organs of grassland species. Here, we examined the effects of N addition on multi-element concentrations, and analyzed their patterns across different organs (leaf, stem, root and seed) of five plant species in a steppe community of the Inner Mongolian grassland. Our results showed that seeds exhibited the most stable elemental composition with N addition, and that manganese (Mn) and iron (Fe) concentrations were substantially more variable than macro-elements in response to N addition. In particular, we identified a set of significant negative relationships between elemental concentrations and their corresponding CVs (coefficients of variation) for all plant organs as a whole and for each individual organ. We further found that changes in soil pH and the availability of soil nutrients contributed mostly to variation in the biomass elemental composition of major plants in this community. These findings are important for accurately assessing the effects of N deposition on the biochemical cycling of nutrient elements in grassland ecosystems, and provide critical clues for developing effective approaches to adaptively managing grassland resources as well as mitigating the impact of global change on the dryland ecosystems in the Mongolia Plateau.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Pradaria , Biomassa , Plantas , Sementes/química , Solo/química , China
16.
Environ Monit Assess ; 196(2): 201, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270701

RESUMO

Applying sewage sludge in agricultural soils is an interesting source of organic matter. This study aimed to monitor concentrations of heavy elements in soil and guar plants, which can pose a risk to the health of humans and animals if they enter the food chain through the soil-plant system. The experiment revealed that applying sludge increased the amount of organic matter, total nitrogen, potassium, and phosphorus in the soil. Additionally, the concentration of heavy metals such as Pb, Co, Cr, Ni, Cu, and Zn in all treatments remained below the permissible limits for soil. The highest plant height and plant dry weight were recorded in the sludge and sludge + fertilizer treatments. The dry weight of the guar varied from 629 g m-1 in the control treatment to 1050 g m-1 in the sludge + fertilizer plots. The use of sludge increased the accumulation of heavy metals in the above-ground parts of the guar plant compared to the control. However, the level of heavy metal remained within the normal range and below the toxic concentration. Our results also showed that the application of sludge along with fertilizer improved the quality of the guar forage by increasing the levels of crude protein, digestible dry matter and water-soluble carbohydrates. Overall, the results indicated that using sludge as organic fertilizer can improve soil properties, reduce the use of inorganic fertilizers, and decrease the harmful effects of heavy metals on the environment and health in the research area.


Assuntos
Cyamopsis , Metais Pesados , Animais , Humanos , Solo , Biomassa , Esgotos , Fertilizantes , Monitoramento Ambiental
17.
Biometals ; 37(1): 185-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37792256

RESUMO

Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.


Assuntos
Cromo , Micorrizas , Cromo/toxicidade , Cisteína , Óxido Nítrico/farmacologia , Compostos de Sulfidrila , Solo , Cistationina gama-Liase , Glutationa/metabolismo , Genótipo
18.
Mar Environ Res ; 193: 106297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096713

RESUMO

Protoporphyrin IX (PPIX), a key precursor for the synthesis of chlorophyll and heme, is fundamental to photosynthetic eukaryotic cells and participates in light absorption, energy transduction, and numerous other cellular metabolic activities. Along with the application of genetic and biochemical techniques over the past few years, our understanding of the formation of PPIX has been largely advanced, especially regarding possible metabolic pathways. However, the ecological role and function of PPIX in natural ecosystems remains unclear. We have previously established a method for quantifying PPIX in marine ecosystems. Here, our results provide evidence that PPIX is not only subtly linked to nutrient uptake but also triggers phytoplankton productivity. PPIX and its derivatives are dynamic spatiotemporally in direct response to increased nutrient availability. Using 16 S rRNA gene amplicon sequencing, PPIX was revealed to interact strongly with many microorganisms, indicating that PPIX serves as a critical metabolite in maintaining microbial metabolism and community development. In summary, we observed that PPIX is linearly related to nutrient availability and microbial diversity. The levels of microbial PPIX reflect ecological health, and the availability of PPIX and nutrients jointly affect microbial community composition.


Assuntos
Ecossistema , Protoporfirinas , Protoporfirinas/genética , Protoporfirinas/metabolismo , Heme/metabolismo
19.
Ecotoxicol Environ Saf ; 267: 115657, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924800

RESUMO

Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.


Assuntos
Bacillus megaterium , Mostardeira , Cádmio/toxicidade , Plantas , Tolerância ao Sal , Homeostase , Solo , Microbiologia do Solo , Raízes de Plantas
20.
Glob Chang Biol ; 29(23): 6741-6755, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815486

RESUMO

Large parts of the Earth are experiencing environmental change caused by alien plant invasions, rising atmospheric concentration of carbon dioxide (CO2 ), and nutrient enrichments. Elevated CO2 and nutrient concentrations can separately favour growth of invasive plants over that of natives but how herbivory may modulate the magnitude and direction of net responses by the two groups of plants to simultaneous CO2 and nutrient enrichments remains unknown. In line with the enemy release hypothesis, invasive plant species should reallocate metabolites from costly anti-herbivore defences into greater growth following escape from intense herbivory in the native range. Therefore, invasive plants should have greater growth than native plants under simultaneous CO2 and nutrient enrichments in the absence of herbivory. To test this prediction, we grew nine congeneric pairs of invasive and native plant species that naturally co-occurred in grasslands in China under two levels each of nutrient enrichment (low-nutrient vs. high-nutrient), herbivory (with herbivory vs. without herbivory) and under ambient (412.9 ± 0.6 ppm) and elevated (790.1 ± 6.2 ppm) levels of CO2 concentrations in open top chambers in a common garden. Elevated CO2 and nutrient enrichment separately increased total plant biomass, while herbivory reduced it regardless of the plant invasive status. High-nutrient treatment caused the plants to allocate a significantly lower proportion of total biomass to roots, while herbivory induced an opposite pattern. Herbivory suppressed total biomass production more strongly in native plants than invasive plants. The plants exhibited significant interspecific and intergeneric variation in their responses to the various treatment combinations. Overall, these results suggest that elevated CO2 and nutrients and herbivory may separately, rather than synergistically, impact productivity of the invasive and co-occurring native plant species in our study system. Moreover, interspecific variation in resource-use strategies was more important than invasive status in determining plant responses to the various treatment combinations.


Assuntos
Dióxido de Carbono , Herbivoria , Biomassa , Plantas , Espécies Introduzidas , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA