Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Ther Oncol ; 32(3): 200824, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39035202

RESUMO

Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.

3.
Front Immunol ; 15: 1375413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895115

RESUMO

Introduction: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with unacceptably low cure rates occurring often in patients with neurofibromatosis 1 defects. To investigate oncolytic Herpes Simplex Virus (oHSV) as an immunotherapeutic approach, we compared viral replication, functional activity, and immune response between unarmed and interleukin 12 (IL-12)-armed oncolytic viruses in virus-permissive (B109) and -resistant (67C-4) murine MPNSTs. Methods: This study compared two attenuated IL-12-oHSVs with γ134.5 gene deletions (Δγ134.5) and the same transgene expression cassette. The primary difference in the IL-12-oHSVs was in their ability to counter the translational arrest response in infected cells. Unlike M002 (Δγ134.5, mIL-12), C002 (Δγ134.5, mIL-12, IRS1) expresses an HCMV IRS1 gene and evades dsRNA activated translational arrest in infected cells. Results and discussion: Our results show that oHSV replication and gene expression results in vitro were not predictive of oHSV direct oncolytic activity in vivo. Tumors that supported viral replication in cell culture studies resisted viral replication by both oHSVs and restricted M002 transgene expression in vivo. Furthermore, two IL-12-oHSVs with equivalent transcriptional activity differed in IL-12 protein production in vivo, and the differences in IL-12 protein levels were reflected in immune infiltrate activity changes as well as tumor growth suppression differences between the IL-12-oHSVs. C002-treated tumors exhibited sustained IL-12 production with improved dendritic cells, monocyte-macrophage activity (MHCII, CD80/CD86 upregulation) and a polyfunctional Th1-cell response in the tumor infiltrates. Conclusion: These results suggest that transgene protein production differences between oHSVs in vivo, in addition to replication differences, can impact OV-therapeutic activity.


Assuntos
Interleucina-12 , Terapia Viral Oncolítica , Vírus Oncolíticos , Transgenes , Replicação Viral , Animais , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Humanos , Simplexvirus/genética , Células Dendríticas/imunologia , Feminino
4.
Neuro Oncol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853689

RESUMO

BACKGROUND: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS: Transcriptome analysis identified IGF2 as one of the top secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%) (p=0.0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8+cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSION: This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.

5.
Mol Ther Oncol ; 32(1): 200778, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596302

RESUMO

To retarget oncolytic herpes simplex virus (oHSV) to cancer-specific antigens, we designed a novel, double-retargeted oHSV platform that uses single-chain antibodies (scFvs) incorporated into both glycoprotein H and a bispecific adapter expressed from the viral genome to mediate infection predominantly via tumor-associated antigens. Successful retargeting was achieved using a nectin-1-detargeted HSV that remains capable of interacting with herpesvirus entry mediator (HVEM), the second canonical HSV entry receptor, and is, therefore, recognized by the adapter consisting of the virus-binding N-terminal 82 residues of HVEM fused to the target-specific scFv. We tested both an epithelial cell adhesion molecule (EpCAM)- and a human epidermal growth factor receptor 2-specific scFv separately and together to target cells expressing one, the other, or both receptors. Our results show not only dose-dependent, target receptor-specific infection in vitro, but also enhanced virus spread compared with single-retargeted virus. In addition, we observed effective infection and spreading of the EpCAM double-retargeted virus in vivo. Remarkably, a single intravenous dose of the EpCAM-specific virus eliminated all detectable tumors in a subcutaneous xenograft model, and the same intravenous dose seemed to be harmless in immunocompetent FVB/N mice. Our findings suggest that our double-retargeted oHSV platform can provide a potent, versatile, and systemically deliverable class of anti-cancer therapeutics that specifically target cancer cells while ensuring safety.

6.
Mol Ther Oncol ; 32(2): 200799, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38681801

RESUMO

Glioblastoma is the most common and aggressive malignant brain tumor and has limited treatment options. Hence, innovative approaches are urgently needed. Oncolytic virus therapy is emerging as a promising modality for cancer treatment due to its tumor-specific targeting and immune-stimulatory properties. In this study, we developed a new generation of oncolytic herpes simplex virus C5252 by deletion of a 15-kb internal repeat region and both copies of γ34.5 genes. Additionally, C5252 was armed with anti-programmed cell death protein 1 antibody and interleukin-12 to enhance its therapeutic efficacy for glioblastoma immune-virotherapy. In vitro and in vivo experiments demonstrate that C5252 has a remarkable safety profile and potent anti-tumor activity against glioblastoma. Mechanistic studies demonstrated that C5252 specifically induces cell apoptosis by caspase-3/7 activation via downregulating ciliary neurotrophic factor receptor α. Furthermore, the enhanced anti-tumor therapeutic efficacy of C5252 in a subcutaneous glioblastoma model and an orthotopic glioblastoma model was confirmed. Moreover, syngeneic mouse models showed that the murine surrogate of C5252 has superior anti-tumor activity compared to the unarmed backbone virus, with enhanced immune activation. Taken together, our findings support C5252 as a promising therapeutic option for glioblastoma treatment, positioning it as a highly promising candidate for clinical translation.

7.
Cancers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539478

RESUMO

The role of the interaction with cell-surface glycosaminoglycans (GAGs) during in vivo HSV infection is currently unknown. The rationale of the current investigation was to improve the anticancer efficacy of systemically administered retargeted oHSVs (ReHVs) by decreasing their binding to GAGs, including those of endothelial cells, blood cells, and off-tumor tissues. As a proof-of-principle approach, we deleted seven amino acids critical for interacting with GAGs from the glycoprotein C (gC) of R-337 ReHV. The modification in the resulting R-399 recombinant prolonged the half-life in the blood of systemically administered R-399 and enhanced its biodistribution to tumor-positive lungs and to the tumor-negative liver. Ultimately, it greatly increased the R-399 efficacy against metastatic-like lung tumors upon IV administration but not against subcutaneous tumors upon IT administration. These results provide evidence that the increased efficacy seen upon R-399 systemic administration correlated with the slower clearance from the circulation. To our knowledge, this is the first in vivo evidence that the partial impairment of the gC interaction with GAGs resulted in a prolonged half-life of circulating ReHV, an increase in the amount of ReHV taken up by tissues and tumors, and, ultimately, an enhanced anticancer efficacy of systemically administered ReHV.

8.
Theranostics ; 14(3): 911-923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250045

RESUMO

Rationale: Novel immune-activating therapeutics for the treatment of glioblastoma multiforme (GBM) have shown potential for tumor regression and increased survival over standard therapies. However, immunotherapy efficacy remains inconsistent with response assessment being complicated by early treatment-induced apparent radiological tumor progression and slow downstream effects. This inability to determine early immunotherapeutic benefit results in a drastically decreased window for alternative, and potentially more effective, treatment options. The objective of this study is to evaluate the effects of combination immunotherapy on early CD8+ cell infiltration and its association with long term response in orthotopic syngeneic glioblastoma models. Methods: Luciferase positive GBM orthotopic mouse models (GSC005-luc) were imaged via [89Zr]-CD8 positron emission tomography (PET) one week following treatment with saline, anti-PD1, M002 oncolytic herpes simplex virus (oHSV) or combination immunotherapy. Subsequently, brains were excised, imaged via [89Zr]-CD8 ImmunoPET and evaluated though autoradiography and histology for H&E and CD8 immunohistochemistry. Longitudinal immunotherapeutic effects were evaluated through [89Zr]-CD8 PET imaging one- and three-weeks following treatment, with changes in tumor volume monitored on a three-day basis via bioluminescence imaging (BLI). Response classification was then performed based on long-term BLI signal changes. Statistical analysis was performed between groups using one-way ANOVA and two-sided unpaired T-test, with p < 0.05 considered significant. Correlations between imaging and biological validation were assessed via Pearson's correlation test. Results: [89Zr]-CD8 PET standardized uptake value (SUV) quantification was correlated with ex vivo SUV quantification (r = 0.61, p < 0.01), autoradiography (r = 0.46, p < 0.01), and IHC tumor CD8+ cell density (r = 0.55, p < 0.01). Classification of therapeutic responders, via bioluminescence signal, revealed a more homogeneous CD8+ immune cell distribution in responders (p < 0.05) one-week following immunotherapy. Conclusions: Assessment of early CD8+ cell infiltration and distribution in the tumor microenvironment provides potential imaging metrics for the characterization of oHSV and checkpoint blockade immunotherapy response in GBM. The combination therapies showed enhanced efficacy compared to single agent immunotherapies. Further development of immune-focused imaging methods can provide clinically relevant metrics associated with immune cell localization that can inform immunotherapeutic efficacy and subsequent treatment response in GBM patients.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Tomografia Computadorizada por Raios X , Imunoterapia , Tomografia por Emissão de Pósitrons , Linfócitos T CD8-Positivos , Microambiente Tumoral
9.
Front Immunol ; 14: 1285113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022620

RESUMO

Recurrent glioma treatment is challenging due to molecular heterogeneity and treatment resistance commonly observed in these tumors. Researchers are actively pursuing new therapeutic strategies. Oncolytic viruses have emerged as a promising option. Oncolytic viruses selectively replicate within tumor cells, destroying them and stimulating the immune system for an enhanced anticancer response. Among Oncolytic viruses investigated for recurrent gliomas, oncolytic herpes simplex virus and oncolytic adenovirus show notable potential. Genetic modifications play a crucial role in optimizing their therapeutic efficacy. Different generations of replicative conditioned oncolytic human adenovirus and oncolytic HSV have been developed, incorporating specific modifications to enhance tumor selectivity, replication efficiency, and immune activation. This review article summarizes these genetic modifications, offering insights into the underlying mechanisms of Oncolytic viruses' therapy. It also aims to identify strategies for further enhancing the therapeutic benefits of Oncolytic viruses. However, it is important to acknowledge that additional research and clinical trials are necessary to establish the safety, efficacy, and optimal utilization of Oncolytic viruses in treating recurrent glioblastoma.


Assuntos
Infecções por Adenoviridae , Glioma , Vírus Oncolíticos , Humanos , Simplexvirus/genética , Adenoviridae/genética , Recidiva Local de Neoplasia/terapia , Glioma/terapia , Vírus Oncolíticos/genética
10.
Cancers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627072

RESUMO

We investigated the anticancer efficacy, blood clearance, and tissue biodistribution of systemically administered retargeted oncolytic herpes simplex viruses (ReHVs) in HSV-naïve and HSV-preimmunized (HSV-IMM) mice. Efficacy was tested against lung tumors formed upon intravenous administration of cancer cells, a model of metastatic disease, and against subcutaneous distant tumors. In naïve mice, HER2- and hPSMA-retargeted viruses, both armed with mIL-12, were highly effective, even when administered to mice with well-developed tumors. Efficacy was higher for combination regimens with immune checkpoint inhibitors. A significant amount of infectious virus persisted in the blood for at least 1 h. Viral genomes, or fragments thereof, persisted in the blood and tissues for days. Remarkably, the only sites of viral replication were the lungs of tumor-positive mice and the subcutaneous tumors. No replication was detected in other tissues, strengthening the evidence of the high cancer specificity of ReHVs, a property that renders ReHVs suitable for systemic administration. In HSV-IMM mice, ReHVs administered at late times failed to exert anticancer efficacy, and the circulating virus was rapidly inactivated. Serum stability and in vivo whole blood stability assays highlighted neutralizing antibodies as the main factor in virus inactivation. Efforts to deplete mice of the neutralizing antibodies are ongoing.

11.
Cancer Lett ; 572: 216363, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37619813

RESUMO

Oncolytic viruses (OVs) have emerged as a clinical therapeutic modality potentially effective for cancers that evade conventional therapies, including central nervous system malignancies. Rationally designed combinatorial strategies can augment the efficacy of OVs by boosting tumor-selective cytotoxicity and modulating the tumor microenvironment (TME). Photodynamic therapy (PDT) of cancer not only mediates direct neoplastic cell death but also primes the TME to sensitize the tumor to secondary therapies, allowing for the combination of two potentially synergistic therapies with broader targets. Here, we created G47Δ-KR, clinical oncolytic herpes simplex virus G47Δ that expresses photosensitizer protein KillerRed (KR). Optical properties and cytotoxic effects of G47Δ-KR infection followed by amber LED illumination (peak wavelength: 585-595 nm) were examined in human glioblastoma (GBM) and malignant meningioma (MM) models in vitro. G47Δ-KR infection of tumor cells mediated KR expression that was activated by LED and produced reactive oxygen species, leading to cell death that was more robust than G47Δ-KR without light. In vivo, we tested photodynamic-oncolytic virus (PD-OV) therapy employing intratumoral injection of G47Δ-KR followed by laser light tumor irradiation (wavelength: 585 nm) in GBM and MM xenografts. PD-OV therapy was feasible in these models and resulted in potent anti-tumor effects that were superior to G47Δ-KR alone (without laser light) or laser light alone. RNA sequencing analysis of post-treatment tumor samples revealed PD-OV therapy-induced increases in TME infiltration of variable immune cell types. This study thus demonstrated the proof-of-concept that G47Δ-KR enables PD-OV therapy for neuro-oncological malignancies and warrants further research to advance potential clinical translation.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias Meníngeas , Meningioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Microambiente Tumoral
12.
Cancer Biomark ; 38(1): 37-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522197

RESUMO

Breast cancer is the most common malignancy in women worldwide. Administration of oncolytic viruses is one of the novel promising cancer therapy approaches. Replication of these viruses is usually limited to cancer cells that have interferon (IFN) signaling defects. However, Interferon signaling is not completely impaired in all cancer cells which may limit the benefits of virotherapy.    Identification of realistic IFN-mediated biomarkers to identify patients who most likely respond to virotherapy would be helpful. In this study, eight patients-derived primary tumor cultures were infected with an ICP34.5 deleted oHSV, then the rate of infectivity, cell survival, and expression of the gene involved in IFN pathway were analyzed.Data showed that mRNA expressions of Myeloid differentiation primary response protein (Myd88) is significantly higher in tumors whose primary cultures showed less cell death and resistance to oHSV infectivity (P-value < 0.05). The differentiating cut off of Myd88 expression, inferred from the receiver operating characteristic (ROC) curve, predicted that only 13 out of 16 other patients could be sensitive to this oHSV. Identifying such biomarker improves our ability to select the patients who do not exhibit resistance to virotherapy.


Assuntos
Neoplasias da Mama , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Humanos , Feminino , Herpesvirus Humano 1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Interferons , Fator 88 de Diferenciação Mieloide/genética , Linhagem Celular Tumoral
13.
Front Mol Biosci ; 10: 1149973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251078

RESUMO

Nectin4 is a recently discovered tumor associated antigen expressed in cancers that constitute relevant unmet clinical needs, including the undruggable triple negative breast cancer, pancreatic ductal carcinoma, bladder/urothelial cancer, cervical cancer, lung carcinoma and melanoma. So far, only one nectin4-specific drug-Enfortumab Vedotin-has been approved and the clinical trials that test novel therapeutics are only five. Here we engineered R-421, an innovative retargeted onco-immunotherapeutic herpesvirus highly specific for nectin4 and unable to infect through the natural herpes receptors, nectin1 or herpesvirus entry mediator. In vitro, R-421 infected and killed human nectin4-positive malignant cells and spared normal cells, e.g., human fibroblasts. Importantly from a safety viewpoint, R-421 failed to infect malignant cells that do not harbor nectin4 gene amplification/overexpression, whose expression level was moderate-to-low. In essence, there was a net threshold value below which cells were spared from infection, irrespective of whether they were malignant or normal; the only cells that R-421 targeted were the malignant overexpressing ones. In vivo, R-421 decreased or abolished the growth of murine tumors made transgenic for human nectin4 and conferred sensitivity to immune checkpoint inhibitors in combination therapies. Its efficacy was augmented by the cyclophosphamide immunomodulator and decreased by depletion of CD8-positive lymphocytes, arguing that it was in part T cell-mediated. R-421 elicited in-situ vaccination that protected from distant challenge tumors. This study provides proof-of-principle specificity and efficacy data justifying nectin4-retargeted onco-immunotherapeutic herpesvirus as an innovative approach against a number of difficult-to-drug clinical indications.

14.
Arch Virol ; 168(4): 128, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002434

RESUMO

Due to recurrence and resistance to chemotherapy, the current standard therapeutics are not fully effective against ovarian cancer. Therefore, we aimed to find an effective approach to improve the prognosis and therapy of ovarian cancer. NG34ScFvPD-1 is a modified oncolytic herpes simplex virus NG34 strain that expresses a single-chain antibody against programmed cell death protein 1 (PD-1) (ScFvPD-1). We assessed its efficacy and its regulatory mechanism in a mouse model of ovarian cancer. Enzyme-linked immunosorbent assay and western blot techniques were used to measure protein expression. Oncolysis caused by NG34ScFvPD-1 was examined using cytotoxicity and replication assays. The mechanism by which NG34ScFvPD-1 regulates apoptosis of ovarian cancer cells in vitro was also evaluated. We assessed the antitumor immunity and therapeutic potency of NG34ScFvPD-1 in combination with a phosphoinositide 3-kinase (PI3K) inhibitor. We found that NG34ScFvPD-1-infected ovarian cancer cells expressed and secreted ScFvPD-1, which bound mouse PD-1. The insertion of the ScFvPD-1 sequence did not inhibit the oncolytic activity of NG34ScFvPD-1, which induced apoptosis of ovarian cancer cells via the caspase-dependent pathway in vitro and activated the PI3K/AKT signaling pathway. Synergy was observed between NG34ScFvPD-1 and a PI3K inhibitor, and the combination was able to suppress tumor development, to prolong survival, and to elicit potent antitumor immunity. Thus, inhibition of PI3K enhanced the potent antitumor immunity induced by NG34ScFvPD-1 against ovarian cancer.


Assuntos
Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Anticorpos de Cadeia Única , Humanos , Feminino , Camundongos , Animais , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Anticorpos de Cadeia Única/genética , Receptor de Morte Celular Programada 1 , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral
15.
Mol Ther Oncolytics ; 28: 171-181, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36789106

RESUMO

High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays an important role in inflammation and tumorigenesis. Receptor for advanced glycation end products (RAGE) is one of the major receptors to which extracellular HMGB1 binds to mediate its activity. RAGE is highly expressed on the endothelial cells (ECs) and regulates endothelial permeability during inflammation. Here, we introduced the endogenous secretory form of RAGE (esRAGE) as a decoy receptor for RAGE ligands into an oncolytic herpes simplex virus 1 (oHSV) (OVesRAGE), which, upon release, can function to block RAGE signaling. OVesRAGE significantly decreased phosphorylation of MEK1/2 and Erk and increased cleaved PARP in glioblastoma (GBM) cells in vitro and in vivo. oHSV-infected GBM cells co-cultured with ECs were used to test OVesRAGE effect on EC activation, vessel leakiness, virus replication, and tumor cell killing. OVesRAGE could effectively secrete esRAGE and rescue virus-induced EC migration and activation. Reduced EC activation facilitated virus replication in tumor cells when co-cultured with ECs. Finally, OVesRAGE significantly enhanced therapeutic efficacy in GBM-bearing mice. Collectively, our data demonstrate that HMGB1-RAGE signaling could be a promising target and that its inhibition is a feasible approach to improve the efficacy of oHSV therapy.

16.
Viruses ; 15(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36680218

RESUMO

Oncolytic herpes simplex virus (oHSV) is a type of virus that selectively targets and kills cancer cells, leaving normal cells unharmed. Accurate viral titer is of great importance for the production and application of oHSV products. Droplet digital PCR (ddPCR) is known for having good reproducibility, not requiring a standard curve, not being affected by inhibitors, and being precise even in the detection of low copies. In the present study, we developed a droplet digital PCR assay for the quantification of HSV-1 and applied it in the oHSV production. The established ddPCR showed good specificity, linearity, a low limit of quantification, great reproducibility, and accuracy. The quantification result was well-associated with that of plaque assay and CCID50. Amplification of the purified virus without DNA extraction by ddPCR presented similar results to that from the extracted DNA, confirming the good resistance against PCR inhibitors. With the ddPCR, viral titer could be monitored in real time during the production of oHSV; the optimal harvest time was determined for the best virus yield in each batch. The ddPCR can be used as a useful tool for the quantification of oHSV and greatly facilitate the manufacturing process of oHSV products.


Assuntos
Herpesvirus Humano 1 , Terapia Viral Oncolítica , Herpesvirus Humano 1/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase
17.
J Cancer Res Clin Oncol ; 149(2): 901-912, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36030435

RESUMO

PURPOSE: Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, with patients having a low overall survival rate. Oncolytic viruses (OVs) have been shown effective as monotherapy or combined with immunotherapy in the treatment of UM. Oncolytic herpes simplex type I virus (oHSV-1) was found to alter gene expression and immune function in UMs. We investigated whether a combination treatment would be more effective in treating UM and reactive immune cells. METHODS: RNA sequencing analysis were used to identify the effect of oHSV-1 infection in UM cells and protein changes were validated by western blot. Cell viability assays were performed through UM cell lines (MUM2B, 92.1, and MP41) and retinal pigment epithelial cell line (ARPE-19) to identify the efficacy and safety of the combination treatment. Western blot, qRT-PCR, cell viability assay and immunocytochemistry were performed to discover the reactivation of immune cells (U937 and HMC3). RESULTS: Through RNA sequencing analysis and in vitro molecular biology assays, this study tested the ability of oHSV-1 combined with the TLR3 agonist poly(I:C) to re-activate the TLR3 meditated NF-ƙB signaling pathway and further increase the anti-tumor activity of UM cells and macrophages, including the stimulation of macrophage polarization and proliferation. CONCLUSIONS: These findings indicate that the treatment of UM with a combination of oHSV-1 and poly(I:C) generates immune responses and enhances anti-tumoral activity, suggesting the need for further investigations and clinical trials of this combination.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Uveais , Humanos , Receptor 3 Toll-Like , Linhagem Celular Tumoral , Terapia Combinada , Neoplasias Uveais/patologia , Vírus Oncolíticos/genética , Transdução de Sinais
18.
Front Immunol ; 14: 1352909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187372

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1285113.].

19.
Biomed Pharmacother ; 155: 113843, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271587

RESUMO

Approximately 20% of meningiomas are not benign (higher grade) and tend to relapse after surgery and radiation therapy. Malignant (anaplastic) meningioma (MM) is a minor subset of high-grade meningioma that is lethal with no effective treatment options currently. Oncolytic herpes simplex virus (oHSV) is a powerful anti-cancer modality that induces both direct cell death and anti-tumor immunity, and has shown activity in preclinical models of MM. However, clinically meaningful efficacy will likely entail rational mechanistic combination approaches. We here show that epigenome modulator histone deacetylase inhibitors (HDACi) increase anti-cancer effects of oHSV in human MM models, IOMM-Lee (NF2 wild-type) and CH157 (NF2 mutant). Minimally toxic, sub-micromolar concentrations of pan-HDACi, Trichostatin A and Panobinostat, substantively increased the infectability and spread of oHSV G47Δ within MM cells in vitro, resulting in enhanced oHSV-mediated killing of target cells when infected at low multiplicity of infection (MOI). Transcriptomics analysis identified selective alteration of mRNA processing and splicing modules that might underlie the potent anti-MM effects of combining HDACi and oHSV. In vivo, HDACi treatment increased intratumoral oHSV replication and boosted the capacity of oHSV to control the growth of human MM xenografts. Thus, our work supports further translational development of the combination approach employing HDACi and oHSV for the treatment of MM.


Assuntos
Herpes Simples , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Panobinostat , Recidiva Local de Neoplasia , Simplexvirus/genética , RNA Mensageiro
20.
BMC Med ; 20(1): 376, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36310169

RESUMO

BACKGROUND: The combination of oncolytic viruses (OVs) with immune checkpoint blockades is a research hotspot and has shown good efficacy. Here, we present the first attempt to combine oncolytic herpes simplex virus 2 (OH2) with an anti-SIRPα antibody as an antitumour treatment. Our results provide unique insight into the combination of innate immunity with OV. METHODS: We verified the polarization and activation of OH2 in RAW264.7 cells in vitro. Subsequently, we evaluated the antitumour ability of OH2 and anti-SIRPα combined therapy in a tumour-bearing mouse model. RNA-seq and Single-cell RNA-seq were used to characterize the changes in the tumour microenvironment. RESULTS: The OH2 lysates effectively stimulated RAW264.7 cells to polarize towards the M1 but not the M2 phenotype and activated the function of the M1 phenotype in vitro. In the macrophage clearance experiment, OH2 therapy induced polarization of M1 macrophages and participated in the antitumour immune response in a tumour-bearing mouse model. Treatment with a combination of OH2 and anti-SIRPα effectively inhibited tumour growth and significantly prolonged the survival time of the mice, and this result was more obvious in the mouse model with a larger tumour volume at the beginning of the treatment. These results suggest that combination therapy can more profoundly reshape the TME and activate stronger innate and adaptive immune responses. CONCLUSIONS: Our data support the feasibility of oncolytic virus therapy in combination with anti-SIRPα antibodies and suggest a new strategy for oncolytic virus therapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/genética , Microambiente Tumoral , Terapia Viral Oncolítica/métodos , Neoplasias/terapia , Imunidade Inata , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA