Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
mBio ; : e0164324, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041819

RESUMO

The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE: Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.

2.
Front Microbiol ; 15: 1404637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044946

RESUMO

The increase in antimicrobial-resistant bacterial strains has highlighted the need for a new vaccine strategy. The primary goal of a candidate vaccine is to prevent disease, by inducing a persistent immunologic memory, through the activation of pathogen-specific immune response. Antibody titer is the main parameter used to assess the immunogenicity of bacterial vaccine candidates and it is the most widely used as a correlate of protection. On the other hand, the antibody titer alone cannot provide complete information on all the activity mediated by antibodies which can only be assessed by functional assays, like the serum bactericidal assay and the opsonophagocytosis assay. However, due to the involvement of many biological factors, these assays are difficult to standardize. Some improvements have been achieved in recent years, but further optimizations are needed to minimize inter- and intra-laboratories variability and to allow the applicability of these functional assays for the vaccine immunogenicity assessment on a larger scale.

3.
Expert Rev Vaccines ; 23(1): 645-654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888098

RESUMO

INTRODUCTION: Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination. AREAS COVERED: In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector. EXPERT OPINION: To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.


Assuntos
Vacinas Antimaláricas , Malária , Mosquitos Vetores , Desenvolvimento de Vacinas , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Animais , Malária/prevenção & controle , Malária/transmissão , Malária/imunologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , Plasmodium/imunologia
4.
J Immunol Methods ; 528: 113652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458312

RESUMO

Streptococcus pyogenes, commonly referred to as Group A Streptococcus (Strep A), causes a spectrum of diseases, with the potential to progress into life-threatening illnesses and autoimmune complications. The escalating threat of antimicrobial resistance, stemming from the prevalent reliance on antibiotic therapies to manage Strep A infections, underscores the critical need for the development of disease control strategies centred around vaccination. Phagocytes play a critical role in controlling Strep A infections, and phagocytosis-replicating assays are essential for vaccine development. Traditionally, such assays have employed whole-blood killing or opsonophagocytic methods using HL-60 cells as neutrophil surrogates. However, assays mimicking Fcγ receptors- phagocytosis in clinical contexts are lacking. Therefore, here we introduce a flow cytometry-based method employing undifferentiated THP-1 cells as monocytic/macrophage model to swiftly evaluate the ability of human sera to induce phagocytosis of Strep A. We extensively characterize the assay's precision, linearity, and quantification limit, ensuring robustness. By testing human pooled serum, the assay proved to be suitable for the comparison of human sera's phagocytic capability against Strep A. This method offers a valuable complementary assay for clinical studies, addressing the gap in assessing FcγR-mediated phagocytosis. By facilitating efficient evaluation of Strep A -phagocyte interactions, it may contribute to elucidating the mechanisms required for the prevention of infections and inform the development of future vaccines and therapeutic advancements against Strep A infections.


Assuntos
Fagocitose , Infecções Estreptocócicas , Humanos , Citometria de Fluxo/métodos , Anticorpos Antibacterianos , Neutrófilos , Streptococcus pyogenes
5.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317258

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Streptococcus suis/genética , Monócitos , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Granulócitos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia
6.
Carbohydr Polym ; 330: 121731, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368077

RESUMO

Enterococcus faecium, a gram-positive opportunistic pathogen, has become a major concern for nosocomial infections due to its resistance to several antibiotics, including vancomycin. Finding novel alternatives for treatment prevention, such as vaccines, is therefore crucial. In this study, we used various techniques to discover a novel capsular polysaccharide. Firstly, we identified an encapsulated E. faecium strain by evaluating the opsonophagocytic activity of fifteen strains with antibodies targeting the well-known lipoteichoic acid antigen. This activity was attributed to an unknown polysaccharide. We then prepared a crude cell wall glycopolymer and fractionated it, guided by immunodot-blot analysis. The most immunoreactive fractions were used for opsonophagocytic inhibition assays. The fraction containing the inhibitory polysaccharide underwent structural characterization using NMR and chemical analyses. The elucidated structure presents a branched repeating unit, with the linear part being: →)-ß-d-Gal-(1 â†’ 4)-ß-d-Glc-(1 â†’ 4)-ß-d-Gal-(1 â†’ 4)-ß-d-GlcNAc-(1→, further decorated with a terminal α-d-Glc and a d-phosphoglycerol moiety, attached to O-2 and O-3 of the 4-linked Gal unit, respectively. This polysaccharide was conjugated to BSA and the synthetic glycoprotein used to immunize mice. The resulting sera exhibited good opsonic activity, suggesting its potential as a vaccine antigen. In conclusion, our effector-function-based approach successfully identified an immunogenic capsular polysaccharide with promising applications in immunotherapy.


Assuntos
Antígenos de Bactérias , Enterococcus faecium , Camundongos , Animais , Antígenos de Bactérias/química , Enterococcus faecium/química , Proteínas Opsonizantes , Polissacarídeos , Anticorpos Antibacterianos , Desenvolvimento de Vacinas
7.
Vaccines (Basel) ; 11(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38006035

RESUMO

The placental transfer of antibodies that mediate bacterial clearance via phagocytes is likely important for protection against invasive group B Streptococcus (GBS) disease. A robust functional assay is essential to determine the immune correlates of protection and assist vaccine development. Using standard reagents, we developed and optimized an opsonophagocytic killing assay (OPKA) where dilutions of test sera were incubated with bacteria, baby rabbit complement (BRC) and differentiated HL60 cells (dHL60) for 30 min. Following overnight incubation, the surviving bacteria were enumerated and the % bacterial survival was calculated relative to serum-negative controls. A reciprocal 50% killing titer was then assigned. The minimal concentrations of anti-capsular polysaccharide (CPS) IgG required for 50% killing were 1.65-3.70 ng/mL (depending on serotype). Inhibition of killing was observed using sera absorbed with homologous CPS but not heterologous CPS, indicating specificity for anti-CPS IgG. The assay performance was examined in an interlaboratory study using residual sera from CPS-conjugate vaccine trials with international partners in the Group B Streptococcus Assay STandardisatiON (GASTON) Consortium. Strong correlations of reported titers between laboratories were observed: ST-Ia r = 0.88, ST-Ib r = 0.91, ST-II r = 0.91, ST-III r = 0.90 and ST-V r = 0.94. The OPKA is an easily transferable assay with accessible standard reagents and will be a valuable tool to assess GBS-specific antibodies in natural immunity and vaccine studies.

8.
Emerg Microbes Infect ; 12(2): 2272656, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855122

RESUMO

Pneumococcal disease is a major threat to public health globally, impacting individuals across all age groups, particularly infants and elderly individuals. The use of current vaccines has led to unintended consequences, including serotype replacement, leading to a need for a new approach to combat pneumococcal disease. A promising solution is the development of a broad-spectrum pneumococcal vaccine. In this study, we present the development of a broad-spectrum protein-based pneumococcal vaccine that contains three pneumococcal virulence factors: rlipo-PsaA (lipidated form), rPspAΔC (truncated form), and rPspCΔC (truncated form). Intranasal immunization with rlipo-PsaA, rPspAΔC, and rPspCΔC (LAAC) resulted in significantly higher IgG titres than those induced by administration of nonlipidated rPsaA, rPspAΔC, and rPspCΔC (AAC). Furthermore, LAAC immunization induced the production of higher IgA titres in vaginal washes, feces, and sera in mice, indicating that LAAC can induce systemic mucosal immunity. In addition, administration of LAAC also induced Th1/Th17-biased immune responses and promoted opsonic phagocytosis of Streptococcus pneumoniae strains of various serotypes, implying that the immunogenicity of LAAC immunization provides a protective effect against pneumococcal infection. Importantly, challenge data showed that the LAAC-immunized mice had a reduced bacterial load not only for several serotypes of the 13-valent conjugate pneumococcal vaccine (PCV13) but also for selected non-PCV13 serotypes. Consistently, LAAC immunization increased the survival rate of mice after bacterial challenge with both PCV13 and non-PCV13 serotypes. In conclusion, our protein-based pneumococcal vaccine provides protective effects against a broad spectrum of Streptococcus pneumoniae serotypes.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Lactente , Feminino , Camundongos , Animais , Idoso , Imunidade nas Mucosas , Vacinas Pneumocócicas , Infecções Pneumocócicas/microbiologia , Imunização , Anticorpos Antibacterianos
9.
mSphere ; 8(5): e0017923, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37729548

RESUMO

Group A Streptococcus (GAS) is a leading human pathogen for which there is no licensed vaccine. Infections are most common in young children and the elderly suggesting immunity accumulates with exposure until immune senescence in older age. Though protection has been postulated to be strain type specific, based on the M-protein (emm-type), the antigenic basis of population-level immunity remains poorly understood. Naturally acquired GAS antibody responses were investigated using intravenous immunoglobulin (IVIG), which contains pooled immunoglobulins from thousands of healthy human donors, as a surrogate for population immunity. Functional opsonophagocytic killing assays were conducted with GAS strains (n = 6) representing the three major emm-pattern types (emm12, A-C pattern; emm53, D-pattern; and emm75, E-pattern). While IVIG induced opsonophagocytic killing of all GAS strains tested, specificity assays showed the profile of protective antibodies differed considerably between emm-types. Antibodies targeting the M-protein were a major component of the functional IVIG antibody response for emm12 and emm53 strains but not for emm75 strains. The striking differences in the contribution of M-protein specific antibodies to killing suggest naturally acquired immunity differs between strains from the major emm-patterns. This challenges the dogma that M-protein is the primary protective antigen across all GAS straintypes. IMPORTANCE Group A Streptococcus (GAS) is a globally important pathogen. With the surge of invasive GAS infections that have occurred in multiple countries, contemporaneous with the relaxation of COVID-19 pandemic restrictions, there is increased interest in the mechanisms underpinning GAS immunity. We utilized intravenous immunoglobulin (IVIG), pooled immunoglobulins from thousands of healthy donors, as a surrogate for population-level immunity to GAS, and explored the contribution of strain-specific (M-type specific) antibodies to GAS immunity using functional killing assays. This revealed striking differences between major strain types as to the contribution of strain specific antibodies to killing. For GAS strains belonging to the E pattern group, M-type specific antibodies do not mediate killing and immunity, which contrasts with strains belonging to pattern A-C and D groups. This challenges the historical dogma, originally proposed by Rebecca Lancefield in the 1950-1960s, that the M-protein is the major protective antigen across all GAS strain types.


Assuntos
Antígenos de Bactérias , Imunoglobulinas Intravenosas , Criança , Humanos , Pré-Escolar , Idoso , Formação de Anticorpos , Pandemias , Streptococcus pyogenes
10.
Front Immunol ; 14: 1187773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680628

RESUMO

Extensive efforts have been made toward improving effective strategies for pneumococcal vaccination, focusing on evaluating the potential of multivalent protein-based vaccines and overcoming the limitations of pneumococcal polysaccharide-based vaccines. In this study, we investigated the protective potential of mice co-immunization with the pneumococcal PhtD and novel rPspA proteins against pneumococcal sepsis infection. The formulations of each antigen alone or in combination were administered intraperitoneally with alum adjuvant into BALB/c mice three times at 14-day intervals. The production of antigen-specific IgG, IgG1 and IgG2a subclasses, and IL-4 and IFN-γ cytokines, were analyzed. Two in vitro complement- and opsonophagocytic-mediated killing activities of raised antibodies on day 42 were also assessed. Finally, the protection against an intraperitoneal challenge with 106 CFU/mouse of multi-drug resistance of Streptococcus pneumoniae ATCC49619 was investigated. Our findings showed a significant increase in the anti-PhtD and anti-rPspA sera IgG levels in the immunized group with the PhtD+rPspA formulation compared to each alone. Moreover, the results demonstrated a synergistic effect with a 6.7- and 1.3- fold increase in anti-PhtD and anti-rPspA IgG1, as well as a 5.59- and 1.08- fold increase in anti-PhtD and anti-rPspA IgG2a, respectively. Co-administration of rPspA+PhtD elicited a mixture of Th-2 and Th-1 immune responses, more towards Th-2. In addition, the highest complement-mediated killing activity was observed in the sera of the immunized group with PhtD+rPspA at 1/16 dilution, and the opsonophagocytic activity was increased from 74% to 86.3%. Finally, the survival rates showed that mice receiving the rPspA+PhtD formulation survived significantly longer (100%) than those receiving protein alone or PBS and exhibited the strongest clearance with a 2 log10 decrease in bacterial load in the blood 24h after challenge compared to the control group. In conclusion, the rPspA+PhtD formulation can be considered a promising bivalent serotype-independent vaccine candidate for protection against invasive pneumococcal infection in the future.


Assuntos
Infecções Pneumocócicas , Vacinas , Animais , Camundongos , Streptococcus pneumoniae , Infecções Pneumocócicas/prevenção & controle
11.
Vaccine ; 41(35): 5079-5084, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37455161

RESUMO

Low and very-low-birth-weight (V/LBW) neonates are highly susceptible to bacterial sepsis and meningitis. Bacterial infections caused by Staphylococcus aureus can be particularly dangerous for neonates and can result in high mortality and long-term disabilities.Antibody-based strategies have been attempted to protect V/LBW neonates against staphylococcal disease. However, these efforts have so far been unsuccessful. Failures were attributed to the immaturity of the neonatal immune system but did not account for the anti-opsonic activity of Staphylococcal protein A (SpA). Here we show that monoclonal antibody 3F6, which blocks SpA activity, promotes complement-dependent cell-mediated phagocytosis of S. aureus in human umbilical cord blood. A substitution in the crystallizable fragment (Fc) region of 3F6 that enhances recruitment of complement component C1q further increases the phagocytic activity of cord blood. Our data demonstrate that the neonatal immune system possesses bactericidal activity that can be harnessed by antibodies that circumvent a key innate immune strategy of S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Recém-Nascido , Humanos , Proteína Estafilocócica A/metabolismo , Sangue Fetal , Opsonização , Anticorpos Antibacterianos , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais
12.
Immunity ; 56(6): 1255-1268.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059107

RESUMO

In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.


Assuntos
Neutrófilos , Fagocitose , Camundongos , Animais , Humanos , Macrófagos/metabolismo , Streptococcus pneumoniae , c-Mer Tirosina Quinase
13.
Proc Natl Acad Sci U S A ; 120(14): e2220765120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972444

RESUMO

Antibodies bind target molecules with exquisite specificity. The removal of these targets is mediated by the effector functions of antibodies. We reported earlier that the monoclonal antibody (mAb) 3F6 promotes opsonophagocytic killing of Staphylococcus aureus in blood and reduces bacterial replication in animals. Here, we generated mouse immunoglobulin G (mIgG) subclass variants and observed a hierarchy in protective efficacy 3F6-mIgG2a > 3F6-mIgG1 ≥ 3F6-mIgG2b >> 3F6-mIgG3 following bloodstream challenge of C57BL/6J mice. This hierarchy was not observed in BALB/cJ mice: All IgG subclasses conferred similar protection. IgG subclasses differ in their ability to activate complement and interact with Fcγ receptors (FcγR) on immune cells. 3F6-mIgG2a-dependent protection was lost in FcγR-deficient, but not in complement-deficient C57BL/6J animals. Measurements of the relative ratio of FcγRIV over complement receptor 3 (CR3) on neutrophils suggest the preferential expression of FcγRIV in C57BL/6 mice and of CR3 in BALB/cJ mice. To determine the physiological significance of these differing ratios, blocking antibodies against FcγRIV or CR3 were administered to animals before challenge. Correlating with the relative abundance of each receptor, 3F6-mIgG2a-dependent protection in C57BL/6J mice showed a greater reliance for FcγRIV while protection in BALB/cJ mice was only impaired upon neutralization of CR3. Thus, 3F6-based clearance of S. aureus in mice relies on a strain-specific contribution of variable FcγR- and complement-dependent pathways. We surmise that these variabilities are the result of genetic polymorphism(s) that may be encountered in other mammals including humans and may have clinical implications in predicting the efficacy of mAb-based therapies.


Assuntos
Imunoglobulina G , Staphylococcus aureus , Humanos , Camundongos , Animais , Staphylococcus aureus/metabolismo , Receptores de IgG/genética , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais/farmacologia , Proteínas do Sistema Complemento , Mamíferos/metabolismo
14.
Front Immunol ; 13: 1020580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578495

RESUMO

Defense against Haemophilus influenzae type b (Hib) is dependent on antibodies and complement, which mediate both serum bactericidal activity (SBA) and opsonophagocytosis. Here we evaluated the influence of capsule-specific antibodies and complement inhibitors targeting the central component C3, the alternative pathway (AP; fB, fD), the lectin pathway (LP; MASP-2) and the terminal pathway (C5) on both effector functions. Findings may be relevant for the treatment of certain diseases caused by dysregulation of the complement system, where inhibitors of complement factors C3 or C5 are used. Inhibitors against other complement components are being evaluated as potential alternative treatment options that may carry a reduced risk of infection by encapsulated bacteria. Serum and reconstituted blood of healthy adults were tested for bactericidal activity before and after vaccination with the Hib capsule-conjugate vaccine ActHIB. Most sera had bactericidal activity prior to vaccination, but vaccination significantly enhanced SBA titers. Independently of the vaccination status, both C3 and C5 inhibition abrogated SBA, whereas inhibition of the LP had no effect. AP inhibition had a major inhibitory effect on SBA of pre- vaccination serum, but vaccination mitigated this inhibition for all disease isolates tested. Despite this, SBA-mediated killing of some Hib isolates remained retarded. Even for the most serum-resistant isolate, SBA was the dominating defense mechanism in reconstituted whole blood, as addition of blood cells to the serum did not enhance bacterial killing. Limited Fc receptor-mediated opsonophagocytosis was unmasked when bacterial killing by the membrane attack complex was blocked. In the presence of C3 or C5 inhibitors, addition of post-vaccination, but not of pre-vaccination serum to the blood cells triggered opsonophagocytosis, leading to suppression of bacterial multiplication. Taken together, our data indicate that for host defense against Hib, killing by SBA is more efficient than by blood cell opsonophagocytosis. However, additional defense mechanisms, such as bacterial clearance by spleen and liver, may play an important role in preventing Hib-mediated sepsis, in particular for Hib isolates with increased serum-resistance. Results indicate potentially improved safety profile of AP inhibitors over C3 and C5 inhibitors as alternative therapeutic agents in patients with increased susceptibility to Hib infection.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae tipo b , Adulto , Humanos , Opsonização , Anticorpos Antibacterianos , Proteínas do Sistema Complemento
15.
Expert Rev Vaccines ; 21(12): 1727-1738, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369768

RESUMO

INTRODUCTION: Pertussis vaccines have drastically reduced the disease burden in humans since their implementation. Despite their success, pertussis remains an important global public health challenge. Bordetella pertussis resurgence could be a result of greater surveillance combined with improved diagnosis methods, changes in Bordetella pertussis biology, vaccine schedules, and/or coverage. Additionally, mechanisms of protection conferred by acellular pertussis (aP) and whole-cell pertussis (wP) vaccines differ qualitatively. There are no clear immune correlates of protection for pertussis vaccines. Pertussis antigens can induce toxin neutralizing antibodies, block adherence or engage complement mediated phagocytic/bactericidal killing. AREAS COVERED: We reviewed the existing evidence on antibody-mediated serum bactericidal and opsonophagocytic activity and discussed the relevance of these functional antibodies in the development of next-generation pertussis vaccines. EXPERT OPINION: Current paradigm proposes that wP vaccines may confer greater herd protection than aP vaccines due to their enhanced clearance of bacteria from the nasopharynx in animal models. Functional antibodies may contribute to the reduction of nasal colonization, which differentiates aP and wP vaccines. Understanding the intrinsic differences in protective immune responses elicited by each class of vaccines will help to identify biomarkers that can be used as immunological end points in clinical trials.


Assuntos
Bordetella pertussis , Coqueluche , Animais , Humanos , Coqueluche/prevenção & controle , Vacina contra Coqueluche , Proteínas do Sistema Complemento , Anticorpos Antibacterianos
16.
Vaccine ; 40(50): 7201-7210, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36210249

RESUMO

Childhood pneumococcal conjugate vaccine (PCV) protects against invasive pneumococcal disease caused by vaccine-serotype (VT) Streptococcus pneumoniae by generating opsonophagocytic anti-capsular antibodies, but how vaccination protects against and reduces VT carriage is less well understood. Using serological samples from PCV-vaccinated Malawian individuals and a UK human challenge model, we explored whether antibody quality (IgG subclass, opsonophagocytic killing, and avidity) is associated with protection from carriage. Following experimental challenge of adults with S. pneumoniae serotype 6B, 3/21 PCV13-vaccinees were colonised with pneumococcus compared to 12/24 hepatitis A-vaccinated controls; PCV13-vaccination induced serotype-specific IgG, IgG1, and IgG2, and strong opsonophagocytic responses. However, there was no clear relationship between antibody quality and protection from carriage or carriage intensity after vaccination. Similarly, among PCV13-vaccinated Malawian infants there was no relationship between serotype-specific antibody titre or quality and carriage through exposure to circulating serotypes. Although opsonophagocytic responses were low in infants, antibody titre and avidity to circulating serotypes 19F and 6A were maintained or increased with age. These data suggest a complex relationship between antibody-mediated immunity and pneumococcal carriage, and that PCV13-driven antibody quality may mature with age and exposure.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Criança , Lactente , Adulto , Pré-Escolar , Formação de Anticorpos , Vacinas Pneumocócicas , Infecções Pneumocócicas/prevenção & controle , Vacinas Conjugadas , Vacinação , Imunoglobulina G , Nasofaringe
17.
Vaccine ; 40(42): 6055-6063, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36096970

RESUMO

No vaccines are currently licensed against Group B streptococcus (GBS), an important cause of morbidity and mortality in babies and adults. Using a mouse model, and in vitro opsonophagocytosis and colonisation assays, we evaluated the potential of a sublingually-administered polysaccharide-conjugate vaccine against GBS serotype III. Sublingual immunisation of mice with 10 µg of GBS conjugate vaccine once a week for 5 weeks induced a substantial systemic IgG anti-polysaccharide response which was similar to the level induced by subcutaneous immunsation. In addition, sublingual immunisation also induced mucosal (IgA) antibody responses in the mouth, intestines and vagina. Immune sera and intestinal washes were functionally active at mediating killing of the homologous GBS serotype III in an opsonophagocytosis assay. In addition, intestinal and vaginal washes inhibited the colonisation of mouse vaginal epithelial cells by the vaccine homologous strain. These results suggest that, in addition to the induction of high levels of IgG antibodies that could be transduced from the immunised mother to the foetus to protect the newborn against GBS infection, sublingual immunisation can elicit a substantial mucosal antibody response which might play an important role in the prevention of GBS colonisation in immunised women, thereby eliminating the risk of GBS transmission from the mother to the baby during pregnancy or at birth.


Assuntos
Infecções Estreptocócicas , Toxoide Tetânico , Anticorpos Antibacterianos , Formação de Anticorpos , Células Epiteliais , Feminino , Humanos , Soros Imunes , Imunoglobulina A , Imunoglobulina G , Polissacarídeos , Gravidez , Sorogrupo , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae , Vacinação , Vacinas Conjugadas
18.
Immunobiology ; 227(6): 152278, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115097

RESUMO

Pseudomonas aeruginosa is one of the most important infectious pathogens in medicine. This bacterium causes various infections, especially in patients with severe burns and people with defective immune systems. The purpose of this study was to develop a nanovaccine based on PLGA nanoparticles and lipopolysaccharide and oligopolysaccharide antigens for appropriate stimulation of the humoral and cellular immune systems against P. aeruginosa. LPS-PLGA and OPS-PLGA conjugates were synthesized using the carbodiimide reaction. The prepared conjugates of as well as the pure antigens of LPS and OPS were injected to BALB/c mice in three periods at 2 week intervals. The ELISA test showed that the IgM, IgA, IgG, IgG1, IgG2b, IgG2a and IgG3 antibodies produced against LPS-PLGA or OPS-PLGA conjugates were tens of times higher than the pure antigens. Also, the opsonophagocytosis test showed that the performance and the effect of produced anti-LPS-PLGA antibodies were higher than other groups. In addition, the mice treated with LPS-PLGA conjugate were more resistant to P. aeruginosa infection than other groups. These findings indicated that LPS and OPS antigens in conjugation with PLGA nanoparticles have the ability to create and effective immunity against P. aeruginosa and LPS-PLGA is more effective than OPS-PLGA.


Assuntos
Nanopartículas , Infecções por Pseudomonas , Camundongos , Animais , Pseudomonas aeruginosa , Lipopolissacarídeos , Imunoglobulina G , Camundongos Endogâmicos BALB C , Anticorpos Antibacterianos , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/etiologia
19.
Cell Rep Med ; 3(2): 100511, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243418

RESUMO

Maternal vaccination is a promising strategy for preventing neonatal disease caused by group B Streptococcus. The safety and immunogenicity of the prototype vaccine GBS-NN, a fusion protein consisting of the N-terminal domains of the alpha-like proteins (Alp) αC and Rib, were recently evaluated favorably in healthy adult women in a phase 1 trial. Here we demonstrate robust immunoglobulin G (IgG) and immunoglobulin A (IgA) responses against αC and Rib, as well as against the heterotypic Alp family members Alp1-Alp3. IgA and heterotypic IgG responses are more variable between subjects and correlate with pre-existing immunity. Vaccine-induced IgG mediates opsonophagocytic killing and prevents bacterial invasion of epithelial cells. Like the vaccine-induced response, naturally acquired IgG against the vaccine domains is dominated by IgG1. Consistent with the high IgG1 cross-placental transfer rate, naturally acquired IgG against both domains reaches higher concentrations in neonatal than maternal blood, as assessed in a separate group of non-vaccinated pregnant women and their babies.


Assuntos
Imunoglobulina G , Placenta , Adulto , Feminino , Humanos , Imunoglobulina A , Lactente , Recém-Nascido , Gravidez , Subunidades Proteicas , Streptococcus agalactiae , Vacinas de Subunidades Antigênicas
20.
Vet Microbiol ; 266: 109361, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35131553

RESUMO

Klebsiella (K.) pneumoniae causes different diseases in humans and animals including the life-threatening liver abscess syndrome and septicemia, respectively. However, host-pathogen interactions of K. pneumoniae in porcine blood have not been studied. We investigated the working hypothesis that only distinct K. pneumoniae strains have the capacity to survive in porcine blood and that this feature is associated with specific molecular markers such as sequence type, profile of siderophore genes and the regulator of the mucoid phenotype (rmp). Furthermore, we characterize the immune response in growing piglets leading to killing of an invasive K. pneumoniae strain. The veterinary isolates showed great diversity in sequence types and profile of siderophore genes. Porcine isolates were mainly positive for the aerobactin gene iucA but did not carry rmpA and this genotype was associated with proliferation in blood of 4-week-old piglets. Supernatants of an iucA+ but not an iucA- strain boosted growth in porcine serum. Between four and eight weeks of age, piglets showed a prominent increase of IgM binding to K. pneumoniae. Immunglobulin M and complement were crucial for killing of a serum-resistant iucA+ porcine K. pneumoniae strain at eight weeks of age. Flow cytometry analysis confirmed induction of phagocytosis and oxidative burst mediated by serum samples of 8-week-old piglets. Based on our in vitro findings we propose that many porcine iucA+ rmpA- K. pneumoniae strains have the ability to cause bacteremia in young piglets in association with aerobactin-mediated iron acquisition and that this phenotype is lost as specific IgM increases after weaning.


Assuntos
Infecções por Klebsiella , Abscesso Hepático , Doenças dos Suínos , Animais , Imunoglobulina M , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , Abscesso Hepático/veterinária , Opsonização , Suínos , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA