Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
1.
Crit Rev Biotechnol ; : 1-15, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161061

RESUMO

The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.


OUC in fungal cells has biotechnological importance and many physiological functions; OUC is closely related to acetyl glutamate cycle (AGC). Fumarate, L-Orn, siderophore, putrescine and L-Piz produced from OUC have many applications.

2.
Front Immunol ; 15: 1407035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979420

RESUMO

Introduction: The Hand, Foot and Mouth Disease (HFMD), caused by enterovirus 71 infection, is a global public health emergency. Severe HFMD poses a significant threat to the life and well-being of children. Numerous studies have indicated that the occurrence of severe HFMD is associated with cytokine storm. However, the precise molecular mechanism underlying cytokine storm development remains elusive, and there are currently no safe and effective treatments available for severe HFMD in children. Methods: In this study, we established a mouse model of severe HFMD to investigate the molecular mechanisms driving cytokine storm. We specifically analyzed metabolic disturbances, focusing on arginine/ornithine metabolism, and assessed the potential therapeutic effects of spermine, an ornithine metabolite. Results: Our results identified disturbances in arginine/ornithine metabolism as a pivotal factor driving cytokine storm onset in severe HFMD cases. Additionally, we discovered that spermine effectively mitigated the inflammatory injury phenotype observed in mice with severe HFMD. Discussion: In conclusion, our findings provide novel insights into the molecular mechanisms underlying severe HFMD from a metabolic perspective while offering a promising new strategy for its safe and effective treatment.


Assuntos
Arginina , Citocinas , Modelos Animais de Doenças , Doença de Mão, Pé e Boca , Ornitina , Animais , Doença de Mão, Pé e Boca/imunologia , Camundongos , Arginina/metabolismo , Humanos , Citocinas/metabolismo , Espermina/metabolismo , Feminino , Enterovirus Humano A/imunologia , Masculino , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença
3.
Mol Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981468

RESUMO

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.

4.
Mol Genet Metab ; 143(1-2): 108542, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39053126

RESUMO

Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5'-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.

5.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999949

RESUMO

It is known that the inflammation process leading to oxidative stress and thyroid hormone metabolism dysfunction is highly altered in metabolic dysfunction associated with steatotic liver disease (MASLD). This study aims to address the effect of ornithine aspartate (LOLA) and vitamin E (VitE) in improving these processes. Adult Sprague-Dawley rats were assigned to five groups and treated for 28 weeks: controls (n = 10) received a standard diet (for 28 weeks) plus gavage with distilled water (DW) from weeks 16 to 28. MASLD groups received a high-fat and choline-deficient diet for 28 weeks (MASLD group) and daily gavage with 200 mg/kg/day of LOLA, or twice a week with 150 mg of VitE from weeks 16-28. LOLA diminished collagen deposition (p = 0.006). The same treatment diminished carbonyl, TBARS, and sulfhydryl levels and GPx activity (p < 0.001). Type 3 deiodinase increased in the MASLD group, downregulating T3-controlled genes, which was corrected in the presence of LOLA. LOLA also promoted a near-normalization of complex II, SDH, and GDH activities (p < 0.001) and improved reticulum stress, with a reduction in GRP78 and HSPA9/GRP75 protein levels (p < 0.05). The enhanced energy production and metabolism of thyroid hormones, probably because of GSH replenishment provided by the L-glutamate portion of LOLA, opens a new therapeutic approach for MASLD.


Assuntos
Estresse Oxidativo , Ratos Sprague-Dawley , Vitamina E , Animais , Ratos , Vitamina E/farmacologia , Vitamina E/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Dipeptídeos
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000307

RESUMO

Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying hydronephrosis pathogenesis remain unclear. We investigated the cause of hydronephrosis by analyzing tetraspanin 7 (Tspan7) gene-modified mice, which had shown a high incidence of hydronephrosis-like symptoms. We found that these mice were characterized by low liver weights relative to kidney weights and elevated blood ammonia levels, suggesting liver involvement in hydronephrosis. Gene expression analysis of the liver suggested that dysfunction of ornithine transcarbamylase (OTC), encoded by the X chromosome gene Otc and involved in the urea cycle, may contribute as a congenital factor in hydronephrosis. This OTC dysfunction may be caused by genomic mutations in X chromosome genes contiguous to Otc, such as Tspan7, or via the genomic manipulations used to generate transgenic mice, including the introduction of Cre recombinase DNA cassettes and cleavage of loxP by Cre recombinase. Therefore, caution should be exercised in interpreting the hydronephrosis phenotype observed in transgenic mice as solely a physiological function of the target gene.


Assuntos
Hidronefrose , Camundongos Transgênicos , Fenótipo , Animais , Hidronefrose/genética , Camundongos , Tetraspaninas/genética , Tetraspaninas/metabolismo , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Rim/patologia , Rim/metabolismo , Masculino
7.
J Pathol ; 264(1): 101-111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022853

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Progressão da Doença , Fígado , Ornitina Descarboxilase , Putrescina , Animais , Humanos , Putrescina/metabolismo , Ornitina Descarboxilase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/complicações , Células Hep G2 , Adulto
8.
Cell Host Microbe ; 32(8): 1331-1346.e6, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38959900

RESUMO

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.


Assuntos
Amônia , Bacteroides , Fibras na Dieta , Fatores de Crescimento de Fibroblastos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Bacteroides/metabolismo , Camundongos , Fibras na Dieta/metabolismo , Amônia/metabolismo , Microbioma Gastrointestinal/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Masculino , Fígado/metabolismo , Hepatócitos/metabolismo , Ácidos e Sais Biliares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Humanos , Inativação Metabólica , Amidoidrolases
9.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064867

RESUMO

Surfactants are amphiphilic molecules that are capable of mixing water and oil. Biosurfactants are eco-friendly, low-toxicity, and stable to a variety of environmental factors. Optimizing conditions for microorganisms to produce biosurfactants can lead to improved production suitable for scaling up. In this study, we compared heterologous expression levels of the luminescence system luxCDABE operon controlled by regulatable promoters araC-PBAD and its strong version araC-PBAD-SD in Escherichia coli K12, Pseudomonas aeruginosa PAO1, and P. putida KT2440. Real-time monitoring of luminescence levels in the three strains indicated that luxCDABE controlled by araC-PBAD-SD promoter with 0.2% arabinose supplementation in P. putida produced the highest level of luminescence. By using the araC-PBAD-SD promoter-controlled rhlAB expression in P. putida, we were able to produce mono-rhamnolipid at a level of 1.5 g L-1 when 0.02% arabinose was supplemented. With the same system to express olsB, lyso-ornithine lipid was produced at a level of 10 mg L-1 when 0.2% arabinose was supplemented. To our knowledge, this is the first report about optimizing conditions for lyso-ornithine lipid production at a level up to 10 mg L-1. Taken together, our results demonstrate that regulatable araC-PBAD-SD promoter in P. putida KT2440 is a useful system for heterologous production of biosurfactants.


Assuntos
Glicolipídeos , Ornitina , Regiões Promotoras Genéticas , Pseudomonas putida , Tensoativos , Glicolipídeos/biossíntese , Glicolipídeos/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Tensoativos/metabolismo , Ornitina/metabolismo , Ornitina/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Arabinose/metabolismo , Regulação Bacteriana da Expressão Gênica , Escherichia coli/metabolismo , Escherichia coli/genética , Óperon , Lipídeos
10.
Molecules ; 29(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064876

RESUMO

The interplay between the human innate immune system and bacterial cell wall components is pivotal in understanding diseases such as Crohn's disease and Lyme arthritis. Lyme disease, caused by Borrelia burgdorferi, is the most prevalent tick-borne illness in the United States, with a substantial number of cases reported annually. While antibiotic treatments are generally effective, approximately 10% of Lyme disease cases develop persistent arthritis, suggesting a dysregulated host immune response. We have previously identified a link between the immunogenic B. burgdorferi peptidoglycan (PG) and Lyme arthritis and showed that this pathogen sheds significant amounts of PG fragments during growth. Here, we synthesize these PG fragments, including ornithine-containing monosaccharides and disaccharides, to mimic the unique composition of Borrelia cell walls, using reproducible and rigorous synthetic methods. This synthetic approach allows for the modular preparation of PG derivatives, providing a diverse library of well-defined fragments. These fragments will serve as valuable tools for investigating the role of PG-mediated innate immune response in Lyme disease and aid in the development of improved diagnostic methods and treatment strategies.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Borrelia burgdorferi/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Doença de Lyme/tratamento farmacológico , Humanos , Peptidoglicano/química , Peptidoglicano/imunologia , Parede Celular/química
11.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063173

RESUMO

The gyrate atrophy of the choroid and retina (GACR) is a rare genetic disease for which no definitive cure is available. GACR is due to the deficit of ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate-dependent enzyme responsible for ornithine catabolism. The hallmark of the disease is plasmatic ornithine accumulation, which damages retinal epithelium leading to progressive vision loss and blindness within the fifth decade. Here, we characterized the biochemical properties of tetrameric and dimeric hOAT and evaluated hOAT loaded in red blood cells (RBCs) as a possible enzyme replacement therapy (ERT) for GACR. Our results show that (i) hOAT has a relatively wide specificity for amino acceptors, with pyruvate being the most suitable candidate for ornithine catabolism within RBCs; (ii) both the tetrameric and dimeric enzyme can be loaded in RBC retaining their activity; and (iii) hOAT displays reduced stability in plasma, but is partly protected from inactivation upon incubation in a mixture mimicking the intracellular erythrocyte environment. Preliminary ex vivo experiments indicate that hOAT-loaded RBCs are able to metabolize extracellular ornithine at a concentration mimicking that found in patients, both in buffer and, although with lower efficiency, in plasma. Overall, our data provide a proof of concept that an RBC-mediated ERT is feasible and can be exploited as a new therapeutic approach in GACR.


Assuntos
Terapia de Reposição de Enzimas , Eritrócitos , Atrofia Girata , Ornitina-Oxo-Ácido Transaminase , Ornitina , Humanos , Ornitina-Oxo-Ácido Transaminase/metabolismo , Ornitina-Oxo-Ácido Transaminase/genética , Atrofia Girata/tratamento farmacológico , Atrofia Girata/metabolismo , Atrofia Girata/terapia , Eritrócitos/metabolismo , Ornitina/metabolismo , Terapia de Reposição de Enzimas/métodos , Retina/metabolismo , Retina/patologia , Corioide/metabolismo , Corioide/patologia
12.
Talanta ; 277: 126389, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852346

RESUMO

Ammonia is a prevalent aquatic pollutant that disrupts cellular functions and energy metabolism in fish, posing significant environmental and health threats. This research investigates the critical role of arginase 2 (ARG2) in mitigating ammonia toxicity in fish cells and its implications in adapting to nitrogen metabolism under high ammonia exposure. Through a CRISPR-Cas9 engineered ARG2 knockdown (KD) in the Epithelioma Papulosum Cyprini (EPC) cell line, we first investigated the biochemical responses of ARG2 KD and wild-type (WT) EPC cells to ammonia stress (NH4Cl treatment), showing diminished urea production and decreased cell viability in ARG2 KD cells. Subsequently, single-cell Raman spectroscopy analysis revealed that ARG2 KD cells exhibited profound metabolic shifts, including changes in protein, nucleic acids, lipid and sugar levels, showing the adjusting role of ARG2 in the balance of carbohydrate and nitrogen metabolism. Furthermore, the upregulated responses of various amino acids, such as glutamine, arginine, alanine, glutamic acid, glycine, histidine, phenylalanine and valine, in WT cells after NH4Cl treatment diminished in ARG2 KD cells except for the decrease in aspartic acid, indicating a switching effect of ARG2 in nitrogen metabolism under ammonia stress. This study highlights ARG2's essential role in ammonia detoxification and emphasizes ARG2's protective function and its importance in metabolism, shedding light on the adaptive mechanisms fish cells deploy against high ammonia environments. These insights contribute to deep understanding of aquatic organisms' molecular responses to environmental ammonia pollution, offering potential strategies for their protection.


Assuntos
Amônia , Arginase , Nitrogênio , Análise Espectral Raman , Animais , Amônia/metabolismo , Nitrogênio/metabolismo , Análise Espectral Raman/métodos , Arginase/metabolismo , Análise de Célula Única , Linhagem Celular
13.
Artigo em Inglês | MEDLINE | ID: mdl-38847892

RESUMO

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

14.
Sci Rep ; 14(1): 11862, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789596

RESUMO

Hepatic encephalopathy (HE), a morbid ordeal affecting chronic liver disease patients always insists for the search of a rational, superior & infallible agent beyond the time-proven standards i.e., Lactulose & Rifaximin. In this RCT, we compared the efficacy of intravenous (IV) L-ornithine-L-aspartate(LOLA) versus Oral LOLA in patients with chronic liver disease(CLD) enduring overt Hepatic Encephalopathy(OHE). 40 CLD patients with OHE were randomly assigned IV or oral LOLA in a 1:1 ratio. Patients were graded for HE and monitored for serum ammonia levels from day 1 to day 5. The aim was to compare IV versus oral LOLA efficacy in HE grades improvement and its correlation with ammonia levels. The study was registered with clinical trials registry-India, CTRI/2020/12/029943. Baseline characteristics of patients in both groups were similar. The mean difference in ammonia levels from day 1 to day 5 was 55.4 ± 32.58 µmol/L in the IV LOLA group and 60.75 ± 13.82 µmol/L in the oral LOLA group (p = 0.511). Significant reductions in ammonia levels were observed from day 1 to day 5 within each group (p < 0.001). HE grade & ammonia correlated positively in both groups. LOLA, regardless of administration route, has demonstrated efficacy in OHE.


Assuntos
Administração Intravenosa , Amônia , Dipeptídeos , Encefalopatia Hepática , Humanos , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Administração Oral , Dipeptídeos/administração & dosagem , Dipeptídeos/uso terapêutico , Amônia/sangue , Adulto , Resultado do Tratamento , Idoso
15.
Plants (Basel) ; 13(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794479

RESUMO

Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry-wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways.

16.
Environ Sci Pollut Res Int ; 31(23): 34028-34037, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693456

RESUMO

Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOC) in situ. Plants for removing PM and VOC were associated with botanical biofilters to attract pollution to the plant. On the other hand, persistent pollution exposure can lower plant health and phytoremediation effectiveness; therefore, improving plant tolerance against stress is necessary. Various elicitors can enhance plant tolerance to certain stressors. This study aims to investigate different elicitors to maintain plant health and improve the use of plants in phytoremediation for PM and VOC pollution. This experiment used Sansevieria trifasciata hort. ex Prain under PM and VOC stress. Exogenous elicitors, such as proline, ornithine, and a commercial product, were applied to the leaf parts before exposure to PM and VOC stress. The initial concentrations of PM1, PM2.5, and PM10 were 300-350, 350-450, and 400-500 µg m-3, respectively, while the VOC concentration was 2.5-3.0 mg m-3. The plant was stressed for 7 days. The result indicated that ornithine 10 mM is vital in improving plant tolerance and inducing antioxidant enzymes against PM and VOC, while proline 50 mM and a commercial product could not reduce plant stress. This study suggests that ornithine might be an important metabolite to improve plant tolerance to PM and VOC.


Assuntos
Biodegradação Ambiental , Ornitina , Material Particulado , Prolina , Compostos Orgânicos Voláteis , Prolina/metabolismo
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 512-517, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38802913

RESUMO

Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 µmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 µmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.


Assuntos
Doença da Deficiência de Ornitina Carbomoiltransferase , Fenilbutiratos , Humanos , Masculino , Doença da Deficiência de Ornitina Carbomoiltransferase/tratamento farmacológico , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Fenilbutiratos/uso terapêutico , Criança , Glicerol/análogos & derivados
18.
Environ Pollut ; 355: 124199, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788990

RESUMO

Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOCs), but the ability is affected by plant health. Lately, the priming technique was a simple approach to studying improving plant tolerance against abiotic stress by specific metabolites that accumulated, known as "memory", but the mechanism underlying this mechanism and how long this "memory" was retained in the plant was a lack of study. Sansevieria trifasciata was primed for one week for PM and VOC stress to improve plant efficiency on PM and VOC. After that, the plant was recovered for two- or five-weeks, then re-exposed to the same stress with similar PM and VOC concentrations from cigarette smoke. Primed S. trifasciata showed improved removal of PMs entirely within 2 h and VOC within 24 h. The primed plant can maintain a malondialdehyde (MDA) level and retain the "memory" for two weeks. Metabolomics analysis showed that an ornithine-related compound was accumulated as a responsive metabolite under exposure to PM and VOC stress. Exogenous ornithine can maintain plant efficiency and prevent stress by increasing proline and antioxidant enzymes. This study is the first to demonstrate plant "memory" mechanisms under PM and VOC stress.


Assuntos
Biodegradação Ambiental , Material Particulado , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Poluentes Atmosféricos/metabolismo , Asparagaceae/metabolismo , Malondialdeído/metabolismo
19.
World J Hepatol ; 16(5): 832-842, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818297

RESUMO

BACKGROUND: Metabolic-dysfunction associated steatotic liver disease (MASLD) is a hepatic manifestation of metabolic syndrome. Studies suggest ornithine aspartate (LOLA) as drug therapy. AIM: To analyze the influence of LOLA intake on gut microbiota using a nutritional model of MASLD. METHODS: Adult male Sprague Dawley rats were randomized into three groups: Control (10 rats fed with a standard diet), MASLD (10 rats fed with a high-fat and choline-deficient diet), and LOLA (10 rats receiving 200 mg/kg/d LOLA, after the 16th week receiving high-fat and choline-deficient diet). After 28 wk of the experiment, animals were euthanized, and feces present in the intestine were collected. Following fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ system. RESULTS: Alpha and beta diversity metrics were comparable between MASLD and LOLA. 3 OTUs were differentially abundant between MASLD and LOLA, which belong to the species Helicobacter rodentium, Parabacteroides goldsteinii, and Parabacteroides distasonis. The functional prediction provided two different metabolic profiles between MASLD and LOLA. The 9 pathways differentially abundant in MASLD are related to a change in energy source, adenosine/purine nucleotides degradation as well as guanosine and adenosine deoxyribonucleotides biosynthesis. The 14 pathways differentially abundant in LOLA are associated with four major metabolic functions primarily influenced by L-aspartate, including tricarboxylic acid cycle pathways, purine/guanosine nucleotides biosynthesis, pyrimidine ribonucleotides biosynthesis and salvage as well as lipid IVA biosynthesis. CONCLUSION: Although LOLA had no influence on alpha and beta diversity in this nutritional model of MASLD, it was associated with changes in specific gut microbes and their related metabolic pathways.

20.
J Ophthalmic Vis Res ; 19(1): 118-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638626

RESUMO

Purpose: Gyrate atrophy of the choroid and retina (GACR) is a rare congenital disorder and mutations in the ornithine aminotransferase (OAT) gene has been specified as the underlying cause. Patients show a high level of ornithine in body fluids which may be controlled by low protein diets. Pyridoxine (vitamin B6) supplementation may also be effective, however, most patients appear to be nonresponsive to this modality of treatment. Case Report: Here, we report a characterized case of a vitamin B6-responsive GACR who had a splicing mutation in the OAT gene. The GACR diagnosis was confirmed through the clinical features, imaging, biochemical findings, and whole-exome sequencing (WES) results. WES data revealed the splicing mutation in intron 4 of the OAT gene (NM_001322967: c.425-1G>A). Conclusion: Our knowledge about the diagnosis and treatment of GACR can be improved by identifying novel mutations in the OAT gene and accurate follow-up of the patients to determine how they respond to treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA