Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336412

RESUMO

High-entropy perovskite materials (HEPMs), characterized by their multi-element composition and highly disordered structure, can incorporate multiple rare earth elements at the A-site, producing perovskites with enhanced CO2 resistance, making them stay high performance and structurally stable in the CO2 atmosphere. However, this modification may result in reduced oxygen permeability. In this study, we investigated La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.8Fe0.2O3-δ (L0.2M1.8) high-entropy perovskite materials, focusing on enhancing their oxygen permeability in both air and CO2 atmospheres through strategic design modifications at the B-sites and A/B-sites. We prepared Ni-substituted La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.7Fe0.2Ni0.1O3-δ (L0.2M1.7N0.1) HEPMs by introducing Ni elements at the B-site, and further innovatively introduced A-site defects to prepare La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.7Fe0.2Ni0.1O3-δ (L0.1M1.7N0.1) materials. In a pure CO2 atmosphere, the oxygen permeation flux of the L0.1M1.7N0.1 membrane can reach 0.29 mL·cm-2·min-1. Notably, the L0.1M1.7N0.1 membrane maintained a good perovskite structure after stability tests extending up to 120 h under 20% CO2/80% He atmosphere. These findings suggest that A-site-defect high-entropy perovskites hold great promise for applications in CO2 capture, storage, and utilization.

2.
Food Chem ; 453: 139693, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781906

RESUMO

Canola protein obtained from canola meal, a byproduct of the canola industry, is an economical biopolymer with promising film-forming properties. It has significant potential for use as a food packaging material, though it possesses some functional limitations that need improvement. Incorporating nanomaterials is an option to enhance functional properties. This study aims to produce canola protein films by integrating GO exfoliated at several oxidation times and weight ratios to optimize mechanical, thermal, and barrier properties. Oxidation alters the C/O ratio and adds functional groups that bond with the amino/carboxyl groups of protein, enhancing the film properties. Significant improvement was obtained in GO at 60 and 120 min oxidation time and 3% addition level. Tensile strength and elastic modulus increased 200% and 481.72%, respectively, compared to control. Control films showed a 37.57 × 10-3 cm3m/m2/day/Pa oxygen permeability, and it was significantly reduced to 5.65 × 10-3 cm3m/m2/day/Pa representing a 665% reduction.


Assuntos
Embalagem de Alimentos , Grafite , Nanopartículas , Proteínas de Plantas , Resistência à Tração , Embalagem de Alimentos/instrumentação , Grafite/química , Nanopartículas/química , Proteínas de Plantas/química , Brassica napus/química , Permeabilidade , Oxirredução
3.
Micron ; 183: 103664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820861

RESUMO

Physical property prediction and synthesis process optimization are key targets in material informatics. In this study, we propose a machine learning approach that utilizes ridge regression to predict the oxygen permeability at fuel cell electrode surfaces and determine the optimal process temperature. These predictions are based on a persistence diagram derived from tomographic images captured using transmission electron microscopy (TEM). Through machine learning analysis of the complex structures present in the Pt/CeO2 nanocomposites, we discovered that l2 regularization considering diverse structural elements is more appropriate than l1 regularization (sparse modeling). Notably, our model successfully captured the activation energy of oxygen permeability, a phenomenon that could not be solely explained by the geometric feature of the Betti numbers, as demonstrated in a previous study. The correspondence between the ridge regression coefficient and persistence diagram revealed the formation process of the local and three-dimensional structures of CeO2 and their contributions to pre-exponential factor and activation energies. This analysis facilitated the determination of the annealing temperature required to achieve the optimal structure and accurately predict the physical properties.

4.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612428

RESUMO

The plasma membrane forms the boundary between a living entity and its environment and acts as a barrier to permeation and flow of substances. Several computational means of calculating permeability have been implemented for molecular dynamics (MD) simulations-based approaches. Except for double bilayer systems, most permeability studies have been performed under equilibrium conditions, in large part due to the challenges associated with creating concentration gradients in simulations utilizing periodic boundary conditions. To enhance the scientific understanding of permeation and complement the existing computational means of characterizing membrane permeability, we developed a non-equilibrium method that enables the generation and maintenance of steady-state gradients in MD simulations. We utilize PBCs advantageously by imposing a directional bias to the motion of permeants so that their crossing of the boundary replenishes the gradient, like a previous study on ions. Under these conditions, a net flow of permeants across membranes may be observed to determine bulk permeability by a direct application of J=PΔc. In the present study, we explore the results of its application to an exemplary O2 and POPC bilayer system, demonstrating accurate and precise permeability measurements. In addition, we illustrate the impact of permeant concentration and the choice of thermostat on the permeability. Moreover, we demonstrate that energetics of permeation can be closely examined by the dissipation of the gradient across the membrane to gain nuanced insights into the thermodynamics of permeability.


Assuntos
Febre Familiar do Mediterrâneo , Simulação de Dinâmica Molecular , Humanos , Membranas , Membrana Celular , Permeabilidade da Membrana Celular
5.
Colloids Surf B Biointerfaces ; 236: 113806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394857

RESUMO

This work aims at improving and disclosing new properties of films based on polylactic acid (PLA) and a star-shaped polycaprolactone (PCL). Indeed, previous works demonstrated that the presence of ad-hoc synthesized PCL, characterized by low molecular weight and carboxyl end groups (coded as PCL-COOH), improves the elongation at break of the films compared to that of neat PLA and increases their functionality. To further improve the properties of the system, alternating layers of chitosan (CH) and DNA were deposited on the surface applying a Layer-by-Layer (LbL) technique. This method was chosen because it allows the properties of the system to be modified without affecting the specific features of the bulk. In addition, the LbL technique is easily scalable and environmentally friendly because it is based on the use of an aqueous solution of two biomaterials, namely DNA and CH, which are not only derived from renewable sources but are also biocompatible and biodegradable. IR measurements on model silicon substrates subjected to the same treatment as the films, pointed out a linear growth of the proposed LbL assembly. Indeed, FE-SEM measurements highlighted the deposition of a uniform coating. The presence of the CH/DNA assembly reduced the oxygen permeability under both dry and humid (50% R.H.) conditions when compared to the uncoated film. In addition, the coating had no relevant effect on the hydrolytic and enzymatic degradation of the system, so that the biodegradability of the film was maintained.


Assuntos
Quitosana , Poliésteres , Polieletrólitos , Poliésteres/química , Quitosana/química , DNA
6.
Membranes (Basel) ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504992

RESUMO

Simultaneous syngas and pure hydrogen production through partial oxidation of methane and water splitting, respectively, were demonstrated by using mixed ionic-electronic conductors. Tubular ceramic membranes prepared from La0.5Sr0.5FeO3 perovskite were successfully utilized in a 10 M lab scale reactor by applying a radial arrangement. The supply of methane to the middle area of the reaction zone was shown to provide a uniform distribution of the chemical load along the tubes' length. A steady flow of steam feeding the inner part of the membranes was used as oxidative media. A described configuration was found to be favorable to maintaining oxygen permeability values exceeding 1.1 mL∙cm-2∙min-1 and long-term stability of related functional characteristics. Methane's partial oxidation reaction assisted by 10%Ni@Al2O3 catalyst proceeded with selectivity values above 90% and conversion of almost 100%. The transition from a laboratory model of a reactor operating on one tubular membrane to a ten-tube one resulted in no losses in the specific performance. The optimized supply of gaseous fuel opens up the possibility of scaling up the reaction zone and creating a promising prototype of a multitubular reaction zone with a simplified sealing procedure.

7.
Polymers (Basel) ; 15(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447407

RESUMO

The integration of platelet-shaped montmorillonite particles to improve the oxygen barrier of polyvinyl-alcohol-based barrier layers is state-of-the-art, but research on roll-to-roll coatings of such composite barrier lacquers has not been widely published. In this study, two different coating techniques, slot-die and reverse gravure, were used on a roll-to-roll scale to apply barrier lacquers comprising polyvinyl alcohol and montmorillonite. The lacquers were analyzed regarding viscosity at certain shear rates and surface energy and the dried coating layers regarding oxygen barrier, surface morphology, and particle orientation. Low permeability coefficients delivering a high oxygen barrier of 0.14 and 0.12 cm3 (STP) 1 µmm2 d bar were achieved for the coating layers with slot-die and reverse gravure coating, respectively. It turned out that the properties of the barrier lacquer need to be adjusted to the coating technique to achieve high oxygen barrier performance. By tailoring the barrier lacquer formulation, the orientation of the platelet-shaped montmorillonite particles can be achieved using both techniques. A low solid content of down to 3 wt% is preferable for the premetered slot-die coating, because it results in low agglomeration quantity in the coating layer. A high solid content of up to 9 wt% is preferable for the self-metered reverse gravure coating to assure a homogeneously coated layer.

8.
Carbohydr Polym ; 313: 120849, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182949

RESUMO

The effect of water regain on the oxygen permeability coefficient (OP) of regenerated cellulose film was investigated. The OP of the dry film was extremely low, which was classified as a "very high" performance gas barrier; however, the OP increased with increasing water regain, and reached to the OP similar to that of low-density polyethylene film, which was categorized as a "poor" gas barrier. The film thickness increased with increasing water regain, and edge-view small-angle X-ray scattering revealed widening of the space between microcrystals in the thickness direction. Oxygen molecules likely passed through the space between cellulose molecules, which was widened with increasing water regain. The viscoelastic measurements indicated that regenerated cellulose existed in a rubbery state under wet conditions. Overall, the OP of regenerated cellulose was increased because of the widening and micro-Brownian motion of cellulose main chains caused by water.

9.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107233

RESUMO

PLA (polylactic acid) is one of the three major biopolymers available on the market for food packaging, which is both bio-based and biodegradable. However, its performance as a barrier to gases remains too weak to be used for most types of food, particularly oxygen-sensitive foods. A surface treatment, such as coating, is a potential route for improving the barrier properties and/or providing bioactive properties such as antioxidants. Gelatin-based coating is a biodegradable and food-contact-friendly solution for improving PLA properties. The initial adhesion of gelatin to the film is successful, both over time and during production, however, the coating often delaminates. Corona processing (cold air plasma) is a new tool that requires low energy and no solvents or chemicals. It has been recently applied to the food industry to modify surface properties and has the potential to significantly improve gelatin crosslinking. The effect of this process on the functional properties of the coating, and the integrity of the incorporated active compounds were investigated. Two coatings have been studied, a control fish gelatin-glycerol, and an active one containing gallic acid (GA) as a natural antioxidant. Three powers of the corona process were applied on wet coatings. In the test conditions, there were no improvements in the gelatin crosslinking, but the corona did not cause any structural changes. However, when the corona and gallic acid were combined, the oxygen permeability was significantly reduced, while free radical scavenging, reduction, and chelating properties remained unaffected or slightly improved.

10.
Int J Biol Macromol ; 227: 1027-1037, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462592

RESUMO

Recently, packaging industry has turned to biodegradable packaging, and poly(lactic acid) has become the most remarkable polymer. However, the high oxygen permeability of PLA films significantly limits their use. Therefore, this study, it was aimed to improve the oxygen barrier properties of PLA films without adversely affecting the mechanical and water vapor barrier properties. Biodegradable PLA-Zein bi-layer films were produced by changing PLA and zein thickness. Transparent and UV barrier bi-layer films were obtained. Mechanical properties of PLA films were improved by the production of bi-layer films. Water vapor permeability of bi-layer films increased whereas the permeance decreased with zein coating of PLA. Multi-criteria decision hierarchy was used to select the best bi-layer films based on mechanical, permeance, and opacity results. Oxygen barrier properties of PLA film significantly improved by zein coating, and hydrophobicity of PLA film was not affected by zein coating. The crystallization and melting temperatures of films decreased when compared to PLA films, supporting the mechanical results. Homogeneous, non-porous, and smooth film surface was obtained and zein layer was in good compatibility with PLA layer. These results suggest that zein coatings could be used to decrease oxygen permeability of PLA films without negatively affecting other properties.


Assuntos
Zeína , Zeína/química , Resistência à Tração , Embalagem de Alimentos/métodos , Vapor , Poliésteres/química , Permeabilidade , Oxigênio/química
11.
Membranes (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36557129

RESUMO

The La1.7Ca0.3Ni1-yCuyO4+δ (y = 0.0-0.4) nickelates, synthesized via a solid-state reaction method, are investigated as prospective materials for oxygen permeation membranes and IT-SOFC cathodes. The obtained oxides are single-phase and possess a tetragonal structure (I4/mmm sp. gr.). The unit cell parameter c and the cell volume increase with Cu-substitution. The interstitial oxygen content and total conductivity decrease with Cu-substitution. The low concentration of mobile interstitial oxygen ions results in a limited oxygen permeability of Cu-substituted La1.7Ca0.3NiO4+δ ceramic membranes. However, increasing the Cu content over y = 0.2 induces two beneficial effects: enhancement of the electrochemical activity of the La1.7Ca0.3Ni1-yCuyO4+δ (y = 0.0; 0.2; 0.4) electrodes and decreasing the sintering temperature from 1200 °C to 900 °C. Enhanced electrode activity is due to better sintering properties of the developed materials ensuring excellent adhesion and facilitating the charge transfer at the electrode/electrolyte interface and, probably, faster oxygen exchange in Cu-rich materials. The polarization resistance of the La1.7Ca0.3Ni1.6Cu0.4O4+δ electrode on the Ce0.8Sm0.2O1.9 electrolyte is as low as 0.15 Ω cm2 and 1.95 Ω cm2 at 850 °C and 700 °C in air, respectively. The results of the present work demonstrate that the developed La1.7Ca0.3Ni0.6Cu0.4O4+δ-based electrode can be considered as a potential cathode for intermediate-temperature solid oxide fuel cells.

12.
Micromachines (Basel) ; 13(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363917

RESUMO

This research was conducted for the synthesis and application of ophthalmic lens materials with improved oxygen permeability and durability. Polyvinylpyrrolidone (PVP), N-vinyl-2-pyrrolidone (NVP), 3-(trifluoromethyl)styrene (3-TFMSt), and magnesium oxide nanoparticles were used as additives for the basic combination of 2-hydroxyethyl methacrylate (HEMA). Additionally, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent and azobisisobutyronitrile (AIBN) as the initiator. The addition of magnesium oxide nanoparticles was found to increase the tensile strength from 0.0631 to 0.0842 kgf/mm2. Copolymerization with a small amount of 3-TFMSt of about 1% increased the tensile strength to 0.1506 kgf/mm2 and the oxygen permeability from 6.00 to 9.64 (cm2/s)∙(mLO2/mL·mmHg)∙10-11. The contact lens material produced using N-vinyl-2-pyrrolidone and magnesium oxide nanoparticles as additives satisfied the basic physical properties required for hydrogel contact lenses and is expected to be used usefully as a material for fabricating high-performance hydrogel lenses.

13.
ACS Appl Mater Interfaces ; 14(39): 44922-44932, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129845

RESUMO

Cellulose and chitin are the two most abundant naturally produced biopolymers and are being extensively studied as candidates for renewable oxygen barrier films used in packaging. It has been shown that bilayers formed from cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs) exhibit oxygen barrier properties similar to polyethylene terephthalate (PET). However, this prior work explored only coating each layer individually in sequence through techniques such as spray coating. Here, we demonstrate the viability of dual-layer slot die coating of CNC/ChNF bilayers onto cellulose acetate (CA) substrates. The dual-layer slot die method enables significantly lower oxygen permeability versus spray coating while using a roll-to-roll system that applies the bilayer in a single pass. This work discusses suspension properties, wetting, and drying conditions required to achieve well-controlled ChNF/CNC bilayers. Spray-coated bilayer films were on average 25% thinner than the dual-layer bilayer film; however, the thickness-normalized oxygen permeability (OP) of the dual-layer-coated ChNF/CNC bilayer film on CA was 20 times better than that of the spray-coated bilayers. It has been shown that ChNF contributes to the wetting and barrier properties. Values of OP for the slot die-coated bilayers under optimized drying conditions were as low as 1.2 cm3·µm·m-2·d-1·kPa-1, corresponding to a normalized oxygen transmission rate of 0.32 cm3·m-2·d-1 at 23 °C and 50% relative humidity. It is also noted that the adhesive properties of the dual-layer coating are also improved when films are air-dried and that ChNF contributes to the wetting and barrier properties.

14.
Adv Sci (Weinh) ; 9(29): e2203418, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35904088

RESUMO

Intrinsically stretchable organic electrochemical transistors (OECTs) are being pursued as the next-generation tissue-like bioelectronic technologies to improve the interfacing with the soft human body. However, the performance of current intrinsically stretchable OECTs is far inferior to their rigid counterparts. In this work, for the first time, the authors report intrinsically stretchable OECTs with overall performance benchmarkable to conventional rigid devices. In particular, oxygen level in the stretchable substrate is revealed to have a significant impact on the on/off ratio. By employing stretchable substrates with low oxygen permeabilities, the on/off ratio is elevated from ≈10 to a record-high value of ≈104 , which is on par with a rigid OECT. The device remained functional after cyclic stretching tests. This work demonstrates that intrinsically stretchable OECTs have the potential to serve as a new building block for emerging soft bioelectronic applications such as electronic skin, soft implantables, and soft neuromorphic computing.


Assuntos
Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Oxigênio
15.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591351

RESUMO

Cement production is environmentally unsustainable due to the high anthropogenic carbon emissions produced. Supplementary cementitious materials (SCMs), derived from the by-products of different industries, have been deemed an effective way to reduce carbon emissions. The reduction in carbon emissions is achieved by lowering the clinker factor of cement, through a partial replacement with an SCM. Sugarcane Bagasse Ash (SCBA) is produced as an agricultural waste from the sugarcane industry and has gained a lot of attention for being a feasible and readily available pozzolanic material, underutilised as an SCM. This study evaluates alkali-activated sugarcane bagasse ash's mechanical and durability performance, at varied contents, in binary blended cement concrete and ternary blended cement concrete containing silica fume (SF). Potassium Hydroxide (KOH), used as the alkali activator, is intended to enhance the reactivity of the ash, with the possibility of a high-volume SCBA content. The mechanical performance was investigated by compressive and split tensile strength tests, and durability performance was investigated using the Oxygen Permeability Index (OPI) test. In addition, a micro-CT porosity test was conducted to assess how the microstructure and porosity of the concrete affect the mechanical and durability performance. The results indicated that using SCBA in a ternary blend with SF can significantly improve the overall performance and create less porous concrete. At 30% SCBA and 10% SF replacement, the performance tests revealed the highest mechanical strength and the lowest permeability, outperforming the control concrete and the binary blended cement concrete containing only SCBA.

16.
Cellulose (Lond) ; 29(8): 4393-4411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464817

RESUMO

Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/(m2 day kPa) is 1-3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × 10-11 g/m.s. Pa was 1-2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-022-04563-0.

17.
Front Nutr ; 9: 790157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340548

RESUMO

Materials with high barrier properties against oxygen are required for the packaging of many sensitive foods. Since commodity polymers lack these properties, additional barrier materials are used in plastic-based barrier packaging. These are usually more expensive than commodity polymers and, in higher fractions, also make recycling more difficult. Current developments, therefore, aim at barrier layers that are as thin as possible but retain the barrier properties. One approach is to incorporate nanoparticles into these layers. In this study, the barrier properties of nanocomposite coatings, consisting of unmodified polyvinyl alcohol (PVA), and dispersed stick-shaped halloysite (Hal) or platelet-shaped montmorillonite (MMT) silicate nanoparticles, were investigated. The PVA was dissolved in aqueous nanoparticle dispersions, which were prepared by mechanical shearing, to produce the so-called "nanolacquer." Nanolacquers with nanoparticle concentrations of 7, 30, and 47 vol% with respect to PVA were applied in a single process step with k-bar on a polypropylene substrate film. The integration of 30 vol% platelet-shaped MMT enhances the barrier performance in comparison to pure PVA by a factor of 12 and 17 for oxygen and helium, respectively. Scanning electron microscopy (SEM) shows a homogeneous distribution and a parallel alignment of the nanoparticles within the coated layer. An increase in the crystallinity of PVA was observed due to the nanoparticle integration as demonstrated by x-ray diffraction (XRD) measurements. The investigation by Fourier transform infrared (FTIR) spectroscopy and the activation energy of the permeation coefficient indicate an interaction between the nanoparticles and the PVA. The theoretically calculated values for barrier enhancement accord well with the experimental values, which emphasizes that the gas barrier improvement for oxygen and helium is mainly dominated by the tortuous path effect.

18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078933

RESUMO

Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the ß-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.


Assuntos
Oxigênio/metabolismo , Proteínas/metabolismo , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Permeabilidade
19.
Polymers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503051

RESUMO

Oxygen/nitrogen permselective membranes play particularly important roles in fundamental scientific studies and in a number of applications in industrial chemistry, but have not yet fulfilled their full potential. Organic polymers are the main materials used for such membranes because of the possibility of using sophisticated techniques of precise molecular design and their ready processability for making thin and large self-supporting membranes. However, since the difference in the properties of oxygen and nitrogen gas molecules is quite small, for example, their kinetic diameters are 3.46 Å and 3.64 Å, respectively, the architectures of the membrane macromolecules should be designed precisely. It has been reported often that oxygen permeability (PO2) and oxygen permselectivity (α = PO2/PN2) have trade-off relationships for symmetric membranes made from pure polymers. Some empirical upper bound lines have been reported in (ln α - ln PO2) plots since Robeson reported an upper bound line in 1991 for the first time. The main purpose of this review is to discuss suitable macromolecular structures that produce excellent oxygen/nitrogen permselective membranes. For this purpose, we first searched extensively and intensively for papers which had reported α and PO2 values through symmetric dense membranes from pure polymers. Then, we examined the chemical structures of the polymers showing the top performances in (ln α - ln PO2) plots, using their aged performances. Furthermore, we also explored progress in the molecular design in this field by comparing the best polymers reported by 2013 and those subsequently found up to now (2020) because of the rapid outstanding growth in this period. Finally, we discussed how to improve α and PO2 simultaneously on the basis of reported results using not only symmetric membranes of pure organic polymers but also composite asymmetric membranes containing various additives.

20.
ACS Appl Mater Interfaces ; 13(40): 48101-48109, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585569

RESUMO

Systematic studies on the influence of crystalline vs disordered nanocomposite structures on barrier properties and water vapor sensitivity are scarce as it is difficult to switch between the two morphologies without changing other critical parameters. By combining water-soluble poly(vinyl alcohol) (PVOH) and ultrahigh aspect ratio synthetic sodium fluorohectorite (Hec) as filler, we were able to fabricate nanocomposites from a single nematic aqueous suspension by slot die coating that, depending on the drying temperature, forms different desired morphologies. Increasing the drying temperature from 20 to 50 °C for the same formulation triggers phase segregation and disordered nanocomposites are obtained, while at room temperature, one-dimensional (1D) crystalline, intercalated hybrid Bragg Stacks form. The onset of swelling of the crystalline morphology is pushed to significantly higher relative humidity (RH). This disorder-order transition renders PVOH/Hec a promising barrier material at RH of up to 65%, which is relevant for food packaging. The oxygen permeability (OP) of the 1D crystalline PVOH/Hec is an order of magnitude lower compared to the OP of the disordered nanocomposite at this elevated RH (OP = 0.007 cm3 µm m-2 day-1 bar-1 cf. OP = 0.047 cm3 µm m-2 day-1 bar-1 at 23 °C and 65% RH).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA