Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
J Innate Immun ; 16(1): 385-396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025048

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by recurrent eczematous lesions and severe pruritus. The economic burden and time penalty caused by the relapse of AD reduce patients' life quality. SUMMARY: AD has complex pathogenesis, including genetic disorders, epidermal barrier dysfunction, abnormal immune responses, microbial dysbiosis of the skin, and environmental factors. Recently, the role of innate immune cells in AD has attracted considerable attention. This review highlighted recent findings on innate immune cells in the onset and progression of AD. KEY MESSAGES: Innate immune cells play essential roles in the pathogenesis of AD and enough attention should be given for treating AD from the perspective of innate immunity in clinics.


Assuntos
Dermatite Atópica , Imunidade Inata , Dermatite Atópica/imunologia , Humanos , Animais , Pele/imunologia , Pele/patologia
2.
Front Immunol ; 15: 1424768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081318

RESUMO

Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function and infections caused by a variety of microorganisms, including gram-positive and gram-negative organisms, increase the risk of sepsis and therefore mortality. Immune dysfunction is a characterization of sepsis, so timely and effective treatment strategies are needed. The conventional approaches, such as antibiotic-based treatments, face challenges such as antibiotic resistance, and cytokine-based treatments have shown limited efficacy. To address these limitations, a novel approach focusing on membrane receptors, the initiators of the inflammatory cascade, is proposed. Membrane receptors such as Toll-like receptors, interleukin-1 receptor, endothelial protein C receptor, µ-opioid receptor, triggering receptor expressed on myeloid cells 1, and G-protein coupled receptors play pivotal roles in the inflammatory response, offering opportunities for rapid regulation. Various membrane receptor blockade strategies have demonstrated efficacy in both preclinical and clinical studies. These membrane receptor blockades act as early stage inflammation modulators, providing faster responses compared to conventional therapies. Importantly, these blockers exhibit immunomodulatory capabilities without inducing complete immunosuppression. Finally, this review underscores the critical need for early intervention in acute inflammatory and infectious diseases, particularly those posing a risk of progressing to sepsis. And, exploring membrane receptor blockade as an adjunctive treatment for acute inflammatory and infectious diseases presents a promising avenue. These novel approaches, when combined with antibiotics, have the potential to enhance patient outcomes, particularly in conditions prone to sepsis, while minimizing risks associated with antibiotic resistance and immune suppression.


Assuntos
Inflamação , Sepse , Humanos , Sepse/tratamento farmacológico , Sepse/imunologia , Animais , Inflamação/imunologia , Inflamação/tratamento farmacológico , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo
3.
Clin Exp Immunol ; 217(3): 263-278, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38695079

RESUMO

Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1ß, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1ß in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.


Assuntos
COVID-19 , Quimiocina CXCL10 , Sangue Fetal , Interleucina-8 , Leucócitos Mononucleares , Monócitos , SARS-CoV-2 , Humanos , Índia , Adulto , Sangue Fetal/imunologia , Leucócitos Mononucleares/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , Monócitos/imunologia , Interleucina-8/imunologia , Quimiocina CXCL10/imunologia , Feminino , Masculino , Recém-Nascido , Poli I-C/imunologia , Interleucina-10 , Candida albicans/imunologia , Citocinas/metabolismo
5.
Front Pediatr ; 12: 1374448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586155

RESUMO

Acute generalized exanthematous pustulosis (AGEP) is an uncommon eruption characterized by sterile pustules on an erythematous background, which is usually associated with drugs. AGEP is described as a self-limiting disease with favorable prognosis. We reported a case of Kawasaki Disease (KD) following AGEP. A 3-year-old male, who was admitted with pustules and five days of fever at our hospital, was diagnosed with AGEP. Despite the skin lesions and fever improving drastically after prednisolone therapy, the fever recurred on hospitalization day 5. The following symptoms suggestive of KD also appeared: bulbar conjunctival hyperemia, cervical lymphadenopathy, erythema of the lips, eruption on his trunk, and erythema and edema of the hands and feet. He was diagnosed with KD and treated with intravenous immunoglobulin. He was discharged on the thirteenth day of hospitalization without cardiac complications. Drug-induced lymphocyte stimulation test revealed carbocysteine as the suspected cause of AGEP, which consequently triggered KD. Because a mucosal lesion is uncommon in AGEP, bulbar conjunctival hyperemia suggested that KD sequentially occurred after AGEP. Since AGEP is benign and self-limited in most cases, it is necessary to differentiate other diseases, including KD, when recurrent fever or rash occurs in the course of AGEP.

6.
Methods Mol Biol ; 2789: 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506995

RESUMO

Beta-glucans with diverse chemical structures are produced by a variety of microorganisms and are commonly found in microbial cell walls. ß-(1,3)-D-glucans are present in yeast and fungi, and, for this reason, their traces are commonly used as a sign of yeast or fungal infection or contamination. Despite being less immunologically active than endotoxins, beta-glucans are pro-inflammatory and can activate cytokines and other immunological responses via their cognate pattern recognition receptors. Unlike endotoxins, there is no established threshold pyrogen dose for beta-glucans; as such, their quantity in pharmaceutical products is not regulated. Nevertheless, regulatory agencies recognize the potential contribution of beta-glucans to the immunogenicity of protein-containing drug products and recommend assessing beta-glucans to aid the interpretation of immunotoxicity studies and assess the risk of immunogenicity. The protocol for the detection and quantification of ß-(1,3)-D-glucans in nanoparticle formulations is based on a modified limulus amoebocyte lysate assay. The results of this test are used to inform immunotoxicity studies of nanotechnology-based drug products.


Assuntos
Nanopartículas , beta-Glucanas , beta-Glucanas/química , Saccharomyces cerevisiae , Glucanos , Endotoxinas , Nanopartículas/efeitos adversos , Nanopartículas/química
7.
Chin J Nat Med ; 22(3): 280-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553195

RESUMO

In the current study, tea saponin, identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel., was meticulously extracted and hydrolyzed to yield five known sapogenins: 16-O-tiglogycamelliagnin B (a), camelliagnin A (b), 16-O-angeloybarringtogenol C (c), theasapogenol E (d), theasapogenol F (e). Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites (a1-a6). The anti-inflammatory potential of these compounds was assessed using pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns molecules (DAMPs)-mediated cellular inflammation models. Notably, compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1)-induced inflammation, surpassing the efficacy of the standard anti-inflammatory agent, carbenoxolone. Conversely, compounds d, a3, and a6 selectivity targeted endogenous HMGB1-induced inflammation, showcasing a pronounced specificity. These results underscore the therapeutic promise of C. oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.


Assuntos
Camellia , Proteína HMGB1 , Sapogeninas , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Sementes , Chá , Animais
8.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543837

RESUMO

SARS-CoV-2 infection has claimed just over 1.1 million lives in the US since 2020. Globally, the SARS-CoV-2 respiratory infection spread to 771 million people and caused mortality in 6.9 million individuals to date. Much of the early literature showed that SARS-CoV-2 immunity was defective in the early stages of the pandemic, leading to heightened and, sometimes, chronic inflammatory responses in the lungs. This lung-associated 'cytokine storm' or 'cytokine release syndrome' led to the need for oxygen supplementation, respiratory distress syndrome, and mechanical ventilation in a relatively high number of people. In this study, we evaluated circulating PBMC from non-hospitalized, male and female, COVID-19+ individuals over the course of infection, from the day of diagnosis (day 0) to one-week post diagnosis (day 7), and finally 4 weeks after diagnosis (day 28). In our early studies, we included hospitalized and critically care patient PBMC; however, most of these individuals were lymphopenic, which limited our assessments of their immune integrity. We chose a panel of 30 interferon-stimulated genes (ISG) to evaluate by PCR and completed flow analysis for immune populations present in those PBMC. Lastly, we assessed immune activation by stimulating PBMC with common TLR ligands. We identified changes in innate cells, primarily the innate lymphoid cells (ILC, NK cells) and adaptive immune cells (CD4+ and CD8+ T cells) over this time course of infection. We found that the TLR-7 agonist, Resiquimod, and the TLR-4 ligand, LPS, induced significantly better IFNα and IFNγ responses in the later phase (day 28) of SARS-CoV-2 infection in those non-hospitalized COVID-19+ individuals as compared to early infection (day 0 and day 7). We concluded that TLR-7 and TLR-4 agonists may be effective adjuvants in COVID-19 vaccines for mounting immunity that is long-lasting against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Masculino , Feminino , SARS-CoV-2/genética , Pandemias , Imunidade Inata , Vacinas contra COVID-19 , Receptor 4 Toll-Like/genética , Leucócitos Mononucleares , Receptor 7 Toll-Like , Linfócitos , Interferons , Síndrome da Liberação de Citocina
9.
Curr Drug Deliv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38299274

RESUMO

Pharmaceutical grade sugars manufactured under Current Good Manufacturing Practice (cGMP) and complied with International Pharmaceutical Excipients Council (IPEC) quality standards, also contain a significant amount of nano-particulate impurities (NPIs). This review will focus on the origin of NPIs, the mechanism of their interference with Dynamic light scattering (DLS) and endotoxin tests, filtration technology to effectively reduce the NPIs, methodologies for analytical quantification of NPIs, guidance for setting the limits of threshold concentration and the overall impact of NPIs on the therapeutic activity, performance, stability of biopharmaceuticals and protein-based formulations. NPIs with an average particle size of 100 to 200 nm are present in sugars and are a combination of various chemicals such as dextrans (with the presence of ß-glucans), ash, inorganic metal salts, aromatic colorants, etc. These NPIs primarily originate from raw materials and cannot be removed during the sugar refinement process. While it is commonly believed that filtering the final formulation with a 0.22 µ sterilizing grade filter removes all microbes and particles, it is important to note that NPIs cannot be filtered using this standard sterile filtration technology. Exceeding the threshold limit of NPIs can have detrimental effects on formulations containing proteins, monoclonal Antibodies (mAbs), nucleic acids, and other biopharmaceuticals. NPIs and ß-glucans have a critical impact on the functionality and therapeutic activity of biomolecules and if present below the threshold limit of reaction, stability and shelf-life of biologics formulation will be greatly improved and the risk of immunogenic reactions must be significantly decreased.

10.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259065

RESUMO

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Assuntos
Candida albicans , Glucanos , beta-Glucanas , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas com Motivos Associados a Patógenos , Hipóxia/metabolismo , Lactatos/metabolismo , Parede Celular/metabolismo
12.
New Phytol ; 241(4): 1763-1779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823353

RESUMO

Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidases , Imunidade Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Oxirredutases/metabolismo , Fagocitose , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
J Biochem ; 175(1): 35-41, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37793172

RESUMO

CGL1 is a mannose-specific lectin isolated from the Pacific oyster Crassostrea gigas, and it belongs to the DM9 domain protein family. Each subunit of the CGL1 dimer consists of a tandem repeat of DM9 motifs, which were originally found in the Drosophila melanogaster genome. The CGL1 protomer contains two carbohydrate-binding sites: a high-affinity site A and a low-affinity site B. An assay using dendrimers containing oligomannose from yeast (Saccharomyces cerevisiae) revealed that CGL1 exhibited significantly higher affinity for mannotetraose (Man4) compared to mannobiose (Man2) and mannotriose (Man3). To investigate its oligomannose-recognition mechanism, X-ray crystallographic analyses of CGL1/oligomannose complexes were performed. In the CGL1/Man2 and CGL1/Man3 complexes, Manα1-2Man and Manα1-2Manα1-2Man, respectively, were primarily bound to site A, interacting with the non-reducing mannose residue. On the other hand, in the CGL1/Man4 crystal, Man4 (Manα1-2Manα1-2Manα1-6Man) was bound at both site A and site B at the non-reducing and reducing ends, thus linking adjacent CGL1 molecules with crystallographic symmetry. These findings suggest that CGL1 can recognize both the non-reducing and reducing mannose residues of mannose oligosaccharides at its two distinct carbohydrate-binding sites. This enables efficient complex formation, making CGL1 a pattern-recognition molecule capable of recognizing diverse structures of mannose-containing carbohydrate chains.


Assuntos
Crassostrea , Lectinas de Ligação a Manose , Animais , Manose/química , Crassostrea/metabolismo , Drosophila melanogaster/metabolismo , Raios X , Oligossacarídeos/química , Carboidratos
14.
Cells ; 12(17)2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37681885

RESUMO

Emerging evidence implicate the 'microbiota-gut-brain axis' in cognitive aging and neuroinflammation; however, underlying mechanisms still remain to be elucidated. Here, we assessed if potential alterations in intestinal barrier function and microbiota composition as well as levels of two key pattern-recognition receptors namely Toll-like receptor (TLR) 2 and TLR4, in blood and different brain regions, and depending signaling cascades are paralleling aging associated alterations of cognition in healthy aging mice. Cognitive function was assessed in the Y-maze and intestinal and brain tissue and blood were collected in young (4 months old) and old (24 months old) male C57BL/6 mice to determine intestinal microbiota composition by Illumina amplicon sequencing, the concentration of TLR2 and TLR4 ligands in plasma and brain tissue as well as to determine markers of intestinal barrier function, senescence and TLR2 and TLR4 signaling. Cognitive function was significantly impaired in old mice. Also, in old mice, intestinal microbiota composition was significantly altered, while the relative abundance of Gram-negative or Gram-positive bacteria in the small and large intestines at different ages was not altered. Moreover, intestinal barrier function was impaired in small intestine of old mice, and the levels of TLR2 and TLR4 ligands were also significantly higher in both portal and peripheral blood. Furthermore, levels of TLR2 and TLR4 ligands, and downstream markers of TLR signaling were higher in the hippocampal and prefrontal cortex of old mice compared to young animals. Taken together, our results suggest that even in 'healthy' aging, cognitive function is impaired in mice going along with an increased intestinal translocation of TLR ligands and alterations of TLR signaling in several brain regions.


Assuntos
Gastroenteropatias , Receptor 2 Toll-Like , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ligantes , Receptor 4 Toll-Like , Encéfalo , Cognição
15.
Front Immunol ; 14: 1205869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469519

RESUMO

The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.


Assuntos
Infecções Bacterianas , Aves Domésticas , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Galinhas , Imunidade Inata , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/veterinária
16.
J Agric Food Chem ; 71(27): 10438-10447, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384550

RESUMO

Plant pathogen-associated molecular pattern-triggered immunity (PTI) is affected by post-translational modifications, but the role of acetylation in the PTI responses of Sorghum bicolor remains unclear. In this study, a comprehensive acetyl-proteomic analysis was performed on sorghum seedlings treated with chitin based on label-free protein quantification. Chitin rapidly induced 15 PTI-related genes and 5 defense enzymes. Acetylation was upregulated in sorghum after the chitin treatment, and 579, 895, and 929 acetylated proteins, peptides, and sites, respectively, were identified using high-performance liquid chromatography-tandem mass spectrometry. Acetylation and expression of chlorophyll a/b binding proteins (Lhcs) were significantly upregulated, and they were localized in chloroplasts. Additionally, we found that the expression of Lhcs in vivo enhanced chitin-mediated acetylation. The findings of this study provide a comprehensive assessment of the lysine acetylome in sorghum and a foundation for future study into the regulatory mechanisms of acetylation during chlorophyll synthesis.


Assuntos
Sorghum , Sorghum/genética , Sorghum/metabolismo , Clorofila A , Plântula/genética , Plântula/metabolismo , Proteômica/métodos , Quitina/metabolismo , Proteínas/metabolismo , Imunidade Inata , Acetilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
17.
J Exp Bot ; 74(17): 5294-5306, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260405

RESUMO

Genetic underpinnings of host-pathogen interactions in the parasitic plant Striga hermonthica, a root parasitic plant that ravages cereals in sub-Saharan Africa, are unclear. We performed a comparative transcriptome study on five genotypes of sorghum exhibiting diverse resistance responses to S. hermonthica using weighted gene co-expression network analysis (WGCNA). We found that S. hermonthica elicits both basal and effector-triggered immunity-like a bona fide pathogen. The resistance response was genotype specific. Some resistance responses followed the salicylic acid-dependent signaling pathway for systemic acquired resistance characterized by cell wall reinforcements, lignification, and callose deposition, while in others the WRKY-dependent signaling pathway was activated, leading to a hypersensitive response. In some genotypes, both modes of resistance were activated, while in others either mode dominated the resistance response. Cell wall-based resistance was common to all sorghum genotypes but strongest in IS2814, while a hypersensitive response was specific to N13, IS9830, and IS41724. WGCNA further allowed for pinpointing of S. hermonthica resistance causative genes in sorghum, including glucan synthase-like 10 gene, a pathogenesis-related thaumatin-like family gene, and a phosphoinositide phosphatase gene. Such candidate genes will form a good basis for subsequent functional validation and possibly future resistance breeding.


Assuntos
Sorghum , Striga , Sorghum/genética , Sorghum/metabolismo , Striga/genética , Grão Comestível , Melhoramento Vegetal , África Subsaariana
18.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175745

RESUMO

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.


Assuntos
COVID-19 , Doenças Mitocondriais , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Inflamação
19.
Front Immunol ; 14: 1184000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207232

RESUMO

Sensory neurons cooperate with barrier tissues and resident immune cells to form a significant aspect of defensive strategies in concert with the immune system. This assembly of neuroimmune cellular units is exemplified across evolution from early metazoans to mammalian life. As such, sensory neurons possess the capability to detect pathogenic infiltrates at barrier surfaces. This capacity relies on mechanisms that unleash specific cell signaling, trafficking and defensive reflexes. These pathways exploit mechanisms to amplify and enhance the alerting response should pathogenic infiltration seep into other tissue compartments and/or systemic circulation. Here we explore two hypotheses: 1) that sensory neurons' potential cellular signaling pathways require the interaction of pathogen recognition receptors and ion channels specific to sensory neurons and; 2) mechanisms which amplify these sensing pathways require activation of multiple sensory neuron sites. Where possible, we provide references to other apt reviews which provide the reader more detail on specific aspects of the perspectives provided here.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Animais , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Sistema Imunitário , Mamíferos
20.
Microbiol Spectr ; 11(3): e0113523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158741

RESUMO

Fc-C-type lectin receptor (Fc-CTLRs) probes are soluble chimeric proteins constituted of the extracellular domain of a CTLR fused with the constant fraction (Fc) of the human IgG. These probes are useful tools to study the interaction of CTLRs with their ligands, with applications similar to those of antibodies, often in combination with widely available fluorescent antibodies targeting the Fc fragment (anti-hFc). In particular, Fc-Dectin-1 has been extensively used to study the accessibility of ß-glucans at the surface of pathogenic fungi. However, there is no universal negative control for Fc-CTLRs, making the distinction of specific versus nonspecific binding difficult. We describe here 2 negative controls for Fc-CTLRs: a Fc-control constituting of only the Fc portion, and a Fc-Dectin-1 mutant predicted to be unable to bind ß-glucans. Using these new probes, we found that while Fc-CTLRs exhibit virtually no nonspecific binding to Candida albicans yeasts, Aspergillus fumigatus resting spores strongly bind Fc-CTLRs in a nonspecific manner. Nevertheless, using the controls we describe here, we were able to demonstrate that A. fumigatus spores expose a low amount of ß-glucan. Our data highlight the necessity of appropriate negative controls for experiments involving Fc-CTLRs probes. IMPORTANCE While Fc-CTLRs probes are useful tools to study the interaction of CTLRs with ligands, their use is limited by the lack of appropriate negative controls in assays involving fungi and potentially other pathogens. We have developed and characterized 2 negative controls for Fc-CTLRs assays: Fc-control and a Fc-Dectin-1 mutant. In this manuscript, we characterize the use of these negative controls with zymosan, a ß-glucan containing particle, and 2 human pathogenic fungi, Candida albicans yeasts and Aspergillus fumigatus conidia. We show that A. fumigatus conidia nonspecifically bind Fc-CTLRs probes, demonstrating the need for appropriate negative controls in such assays.


Assuntos
Lectinas Tipo C , beta-Glucanas , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Fungos/metabolismo , Leveduras , Esporos Fúngicos/metabolismo , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA