Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1139269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935742

RESUMO

The purpose of our study was to investigate methods of short-term storage that allow preservation, transport and retrieval of genetic information contained in honeybee queen's spermatheca. Genotyping of the honeybee colony requires well ahead planned sample collection, depending on the type of data to be acquired. Sampling and genotyping of spermatheca's content instead of individual offspring is timesaving, allowing answers to the questions related to patriline composition immediately after mating. Such procedure is also cheaper and less error prone. For preservation either Allprotect Tissue Reagent (Qiagen) or absolute ethanol were used. Conditions during transportation were simulated by keeping samples 6-8 days at room temperature. Six different storing conditions of spermathecas were tested, complemented with two DNA extraction methods. We have analysed the concentration of DNA, RNA, and proteins in DNA extracts. We also analysed how strongly the DNA is subjected to fragmentation (through amplification of genetic markers ANT2 and tRNAleu-COX2) and whether the quality of the extracted DNA is suitable for microsatellite (MS) analysis. Then, we tested the usage of spermatheca as a source of patriline composition in an experiment with three instrumentally inseminated virgin queens and performed MS analysis of the extracted DNA from each spermatheca, as well as queens' and drones' tissue. Our results show that median DNA concentration from spermathecas excised prior the storage, regardless of the storing condition and DNA extraction method, were generally lower than median DNA concentration obtained from spermathecas dissected from the whole queens after the storage. Despite the differences in DNA yield from the samples subjected to different storing conditions there was no significant effect of storage method or the DNA extraction method on the amplification success, although fewer samples stored in EtOH amplified successfully in comparison to ATR storing reagent. However, we recommend EtOH as a storing reagent due to its availability, low price, simplicity in usage in the field and in the laboratory, and capability of good preservation of the samples for DNA analysis during transport at room temperature.

2.
Environ Epigenet ; 8(1): dvac024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518875

RESUMO

Life experiences and environmental conditions in childhood can change the physiology and behaviour of exposed individuals and, in some cases, of their offspring. In rodent models, stress/trauma, poor diet, and endocrine disruptors in a parent have been shown to cause phenotypes in the direct progeny, suggesting intergenerational inheritance. A few models also examined transmission to further offspring and suggested transgenerational inheritance, but such multigenerational inheritance is not well characterized. Our previous work on a mouse model of early postnatal stress showed that behaviour and metabolism are altered in the offspring of exposed males up to the 4th generation in the patriline and up to the 2nd generation in the matriline. The present study examined if symptoms can be transmitted beyond the 4th generation in the patriline. Analyses of the 5th and 6th generations of mice revealed that altered risk-taking and glucose regulation caused by postnatal stress are still manifested in the 5th generation but are attenuated in the 6th generation. Some of the symptoms are expressed in both males and females, but some are sex-dependent and sometimes opposite. These results indicate that postnatal trauma can affect behaviour and metabolism over many generations, suggesting epigenetic mechanisms of transmission.

3.
Mol Ecol ; 26(24): 6938-6947, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29113015

RESUMO

Functional worker sterility is the defining feature of insect societies. Yet, workers are sometimes found reproducing in their own or foreign colonies. The proximate mechanisms underlying these alternative reproductive phenotypes are keys to understanding how reproductive altruism and selfishness are balanced in eusocial insects. In this study, we show that in honeybee (Apis mellifera) colonies, the social environment of a worker, that is, the presence and relatedness of the queens in a worker's natal colony and in surrounding colonies, significantly influences her fertility and drifting behaviour. Furthermore, subfamilies vary in the frequency of worker ovarian activation, propensity to drift and the kind of host colony that is targeted for reproductive parasitism. Our results show that there is an interplay between a worker's subfamily, reproductive state and social environment that substantially affects her reproductive phenotype. Our study further indicates that honeybee populations show substantial genetic variance for worker reproductive strategies, suggesting that no one strategy is optimal under all the circumstances that a typical worker may encounter.


Assuntos
Abelhas/genética , Comportamento Animal , Variação Genética , Ovário/fisiologia , Animais , Abelhas/fisiologia , Feminino , New South Wales , Fenótipo , Reprodução , Comportamento Social
4.
Genome Biol Evol ; 7(7): 2010-22, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019166

RESUMO

The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears.


Assuntos
Evolução Molecular , Ursidae/genética , Cromossomo Y , Animais , Feminino , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Filogenia , Sequências Repetitivas de Ácido Nucleico , Ursidae/classificação
5.
Proc Biol Sci ; 281(1793)2014 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-25165768

RESUMO

Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues.


Assuntos
Comunicação Animal , Sinais (Psicologia) , Hidrocarbonetos/química , Insetos/fisiologia , Animais , Feminino , Endogamia , Insetos/genética , Masculino , Comportamento Materno , Reprodução , Comportamento Social , Fatores de Tempo
6.
Insects ; 3(3): 857-69, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-26466632

RESUMO

A honey bee queen mates with a number of drones a few days after she emerges as an adult. Spermatozoa of different drones are stored in her spermatheca and used for the rest of the queen's life to fertilize eggs. Sperm usage is thought to be random, so that the patriline distribution within a honey bee colony would remain constant over time. In this study we assigned the progeny of a naturally mated honey bee queen to patrilines using microsatellite markers at the queen's age of two, three and four years. No significant changes in patriline distribution occurred within each of two foraging seasons, with samples taken one and five months apart, respectively. Overall and pair-wise comparisons between the three analyzed years reached significant levels. Over the three-year period we found a trend for patrilines to become more equally represented with time. It is important to note that this study was performed with a single queen, and thus individual and population variation in sperm usage patterns must be assessed. We discuss long-term changes in patriline composition due to mixing processes in the queen's spermatheca, following incomplete mixing of different drones' sperm after mating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA