Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(6): e0160322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199612

RESUMO

The ß-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for ß-lactams and ß-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All ß-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating ß-lactams. Imipenem yielded 1.5 ± 0.11 log10 killing at 1h compared to <0.5 log10 killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated (r2 = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future ß-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacologia em Rede , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Imipenem/farmacologia , Imipenem/metabolismo , Ceftazidima/metabolismo , beta-Lactamases/metabolismo
2.
Microbiol Spectr ; 11(3): e0069223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093051

RESUMO

The lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. ß-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies. In the present work, we generated the first PBP-binding data set on 18 currently available and clinically relevant ß-lactams and 4 ß-lactamase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226 (PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential PBP IC50s were identified and were mostly consistent across both strains, but with quantitative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L). Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime, and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin, ceftaroline, and ceftolozane required higher concentrations (0.04 to >2 mg/L). Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01 to >2 mg/L). Preferential PBP2 binding was observed by ß-lactam-based ß-lactamase inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooctane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L). This data set will set the bar for future studies that will help the rational use and translational development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae. IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set for 22 chemically different drugs in two type strains with different genetic background. We have identified three clusters of drugs according to their PBP binding IC50s and highlighted the binding differences across the two strains studied. With the currently available genomic information and the PBP-binding data, we have been able to correlate the target attainment differences and the mutations that affect the drug uptake with the MIC changes. The results of the current work will allow us to develop molecular tools of great practical use for the study and the design of new rationally designed therapies capable of combating the growing MDR gonococci threat.


Assuntos
Gonorreia , beta-Lactamas , Humanos , beta-Lactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Penicilinas , Ceftazidima/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Microbiol Spectr ; 11(1): e0303822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475840

RESUMO

The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or ß-lactamase hydrolysis. Critical insights to design optimized antimicrobial therapies and support translational drug development are needed. In the present work, we analyzed the periplasmic drug uptake and binding to PBPs of 11 structurally different ß-lactams and 4 ß-lactamase inhibitors (BLIs) in P. aeruginosa PAO1. The contribution of the most prevalent ß-lactam resistance mechanisms to MIC and periplasmic target attainment was also assessed. Bacterial cultures (6.5 log10 CFU/mL) were exposed to 1/2× PAO1 MIC of each antibiotic for 30 min. Unbound PBPs were labeled with Bocillin FL and analyzed using a FluorImager. Imipenem extensively inactivated all targets. Cephalosporins preferentially targeted PBP1a and PBP3. Aztreonam and amdinocillin bound exclusively to PBP3 and to PBP2 and PBP4, respectively. Penicillins bound preferentially to PBP1a, PBP1b, and PBP3. BLIs displayed poor PBP occupancy. Inactivation of oprD elicited a notable reduction of imipenem target attainment, and it was to a lesser extent in the other carbapenems. Improved PBP occupancy was observed for the main targets of the widely used antipseudomonal penicillins, cephalosporins, meropenem, aztreonam, and amdinocillin upon oprM inactivation, in line with MIC changes. AmpC constitutive hyperexpression caused a substantial PBP occupancy reduction for the penicillins, cephalosporins, and aztreonam. Data obtained in this work will support the rational design of optimized ß-lactam-based combination therapies against resistant P. aeruginosa infections. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative pathogens is linked to three key aspects, (i) the progressive worldwide epidemic spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Gram-negative strains, (ii) a decrease in the number of effective new antibiotics against multiresistant isolates, and (iii) the lack of mechanistically informed combinations and dosing strategies. Our combined efforts should focus not only on the development of new antimicrobial agents but the adequate administration of these in combination with other agents currently available in the clinic. Our work determined the effectiveness of these compounds in the clinically relevant bacteria Pseudomonas aeruginosa at the molecular level, assessing the net influx rate and their ability to access their targets and achieve bacterial killing without generating resistance. The data generated in this work will be helpful for translational drug development.


Assuntos
Pseudomonas aeruginosa , beta-Lactamas , beta-Lactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Aztreonam/farmacologia , Preparações Farmacêuticas/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Cefalosporinas/farmacologia , Penicilinas , Imipenem/metabolismo , Imipenem/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Andinocilina/metabolismo , Andinocilina/farmacologia , Testes de Sensibilidade Microbiana
4.
Artigo em Inglês | MEDLINE | ID: mdl-23330059

RESUMO

BACKGROUND: ß-Lactamases are the main cause of bacterial resistance to penicillin, cephalosporins, and related ß-lactam compounds. The presence of the novel penicillin-binding protein (pbp) Tp47 in Treponema pallidum has been reported to be a well-known mechanism for turnover of b-lactam antibiotics. Although, T. pallidum remains sensitive to penicillin, clinically significant resistance to macrolides has emerged in many developing countries. The genome sequence of T. pallidum has shown the presence of genes encoding pbp, but there are no current reports of the presence of mobile plasmids. METHODS: The phylogenetic analysis is used to study the diversity of chromosomal pbp genes and its relatedness to Tp47 in Treponema species. RESULTS: In our study, genes encoding penicillin-binding proteins that showed significant similarity to each other appeared in separate clusters. CONCLUSION: Tp47 showed no substantial similarity to other ß-lactamases in treponemes. The relatedness of Treponema denticola to other treponemes, including T. pallidum, and the reported presence of natural mobile antibiotic determinants highlight the importance of investigating the diversity of pbp genes in Treponema species. This will lead to a greater understanding of its potential to develop additional antibiotic resistance via horizontal gene transfer that could seriously compromise the treatment and control of syphilis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA