Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050318

RESUMO

Stone Mastic Asphalts (SMA) are asphalt mixes with discontinuous granulometry and a high content of asphalt binder. In order to prevent draindown of the asphalt binder and ensure good performance, these mixes must be strengthened with cellulose or mineral fibres and/or polymer additives. This study was designed to evaluate the effect of a granular additive based on waste tyre textile fibres (WTTF), developed as a replacement for cellulose commercial additives in SMA mixes. Use of the WTTF-based additive will encourage the development of sustainable mixes by recycling a by-product of end-of-life tyres (ELT), which currently constitute a major environmental problem around the world. To this end, in the present experimental study we evaluated the replacement of cellulose-based commercial fibre with different percentages of WTTF-based additive (0%, 50%, 75%, 100%) in an SMA asphalt mix. The following design and performance properties were evaluated: resistance to cracking, stiffness modulus, sensitivity to moisture, and resistance to permanent deformation. The results indicated that replacing 100% of the cellulose commercial additive in the SMA mix by the WTTF-based additive allowed the mix to meet its design properties and showed good performance in the mechanical properties evaluated, with behaviour similar to that of the reference SMA mix.

2.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985440

RESUMO

As a new member of the silica-derivative family, modified glass fiber (MGF) has attracted extensive attention because of its excellent properties and potential applications. Surface modification of glass fiber (GF) greatly changes its performance, resulting in a series of changes to its surface structure, wettability, electrical properties, mechanical properties, and stability. This article summarizes the latest research progress in MGF, including the different modification methods, the various properties, and their advanced applications in different fields. Finally, the challenges and possible solutions were provided for future investigations of MGF.

3.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295195

RESUMO

The development of geopolymer building composites at a lower cost with a smaller carbon footprint may lessen the growing concerns about global warming brought on by emissions of a critical greenhouse gas (CO2) paired with the high production costs in the cement sector. Diatomaceous earth, commonly used as an admixture or partial replacement of cement owing to its most effective pozzolanic properties, has been investigated as a precursor in geopolymer concrete development. Several studies have been examined to develop a greater understanding of its characterization, inclusion status, and impacts on the performance aspects of concrete. The literature review showed that using diatomaceous earth is one of the effective ways to create sustainable, insulating, lightweight building materials while minimizing the harmful economic and environmental effects of industrial solid wastes. However, since most studies have focused on its integration as a partial cement substitute or a replacement for fine aggregate, further research on diatomaceous earth-based clinker-free concrete is required. A lack of research on geopolymer concrete's reinforcement with either natural or synthetic fibers, or a combination of the two, was also discovered. This review also showed that there has been remarkably little effort made towards theoretical property correlation modeling for predicting concrete performance. It is anticipated that the detailed overview presented herein will guide potential researchers in defining their future paths in the study area.

4.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015507

RESUMO

End-of-life tires (ELT) are a worldwide problem. Rubber, steel, and different textile fibers are the by-products of ELT. Unlike rubber and steel, waste tire textile fibers (WTTF) are disposed of in landfills or burned. This study developed an additive made with WTTF to be incorporated into conventional hot mix asphalt (HMA), and its performance properties were evaluated. First, a characterization of the WTTF used was made and a manufacture protocol was established. Then, a reference HMA was designed and mixtures with different addition percentages (2%, 5% and 8%) of the WTTF-based additive were evaluated. The mechanical properties studied were stiffness modulus, moisture susceptibility, rutting resistance, stripping, and cracking resistance. The results indicated that the addition of the 2% and 5% WTTF-based additive improved these performance properties. Moreover, all addition percentages of the WTTF-based additive evaluated demonstrated a decrease of over 29% in permanent deformation according to the Hamburg Wheel Tracking Test. Thus, the use of the WTTF would not only be valuing a waste, but an asphalt mixture with improved properties would be obtained, contributing to the circular economy by reusing a material and prolonging the useful life of the asphalt mixture.

5.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955296

RESUMO

In this study, the possibility of using sawdust, a by-product of primary wood processing, as a filler (WF) for rigid polyurethane (PUR) foams was investigated. The effects of the addition of 5, 10, 15 and 20% of WF particles to the polyurethane matrix on the foaming process, cell structure and selected physical-mechanical properties such as density, thermal conductivity, dimensional stability, water absorption, brittleness, compressive and bending strengths were evaluated. Based on the results, it was found that the addition of WF in the amount of up to 10% does not significantly affect the kinetics of the foam foaming process, allowing the reduction of their thermal conductivity, significantly reducing brittleness and maintaining high dimensional stability. On the other hand, such an amount of WF causes a slight decrease in the compressive strength of the foam, a decrease in its bending strength and an increase in water absorption. However, it is important that in spite of the observed decrease in the values of these parameters, the obtained results are satisfactory and consistent with the parameters of insulation materials based on rigid PUR foam, currently available on the market.

6.
Materials (Basel) ; 15(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629446

RESUMO

The production process of construction profiles from natural fibre-reinforced polymer composites, as well as their assembly, generates considerable amounts of waste. The study analysed the possibility of utilising the said waste to produce profiles with the same intended use as products made from the primary material. The analysis involved the recycling of rice husk-reinforced PVC profiles. As a result of the applied post-processing, a composite of higher homogeneity and better filler dispersion than the product made of primary material was obtained. A slight improvement in thermal properties was observed. From the DSC test, Tg values of 78 °C and nearly 80 °C were obtained, while from the TGA test, mass loss values of 0.6% and 0.4% and the decomposition temperatures of 211 °C and 217 °C were noted for profiles of primary and secondary material, respectively. A softening temperature of 75 °C was obtained for primary material profiles, while nearly 77 °C was obtained for secondary. The more favourable mechanical properties of recycled profiles were also maintained. The higher value of flexural strength, flexural modulus, impact strength and hardness by 31%, 24%, 48% and 40% were obtained, respectively. After hydrothermal cycling, the same properties were higher for secondary material profiles by 35%, 20%, 68%, and 67%, respectively. The recorded level of performance properties of recycled products, better than those of primary material standard construction products', allows us to conclude that profiles made of waste are useful for façade claddings.

7.
Materials (Basel) ; 15(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160790

RESUMO

In this work, GTR/thermoplastics blends (in ratio 50/50 and 75/25 wt.%) were prepared by melt-compounding in an internal mixer. During research, trans-polyoctenamer rubber (TOR), ethylene-vinyl acetate copolymer (EVA), ethylene-octene copolymer (EOC), and linear low-density polyethylene (LLDPE), were used in their thermoplastic phase. Microstructure and processing-performance property interrelationships of the studied materials were investigated by: atomic force microscopy (AFM), scanning electron microscopy (SEM), rubber process analyzer (RPA), Mooney viscometer, plastometer, gas chromatography with mass spectrometry, differential scanning calorimetry (DSC), tensile tests and swelling behavior. In blends of thermoplastics with a high content of GTR (50 and 75 wt.%), the thermoplastic modifier type had a significant impact on the processing behavior and microstructure of blends. In terms of the physico-mechanical properties, the GTR/thermoplastics ratio affected elongation at break, hardness, and density, while its effect on tensile strength was negligible. DSC analysis showed that thermoplastics, as modifiers of GTR, should be considered as binders and not plasticizers, as reflected in the almost constant glass-transition temperature of the blends. RPA measurements indicated higher values of G* and η* for GTR-rich blends. SEM showed a rubber-like interfacial break, while AFM confirmed interfacial contact between GTR and thermoplastics.

8.
Polymers (Basel) ; 13(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833313

RESUMO

In this paper, ground tire rubber was modified with dicumyl peroxide and a variable content (in the range of 0-15 phr) of ethylene-vinyl acetate copolymers characterized by different vinyl acetate contents (in the range of 18-39 wt.%). Modification of ground tire rubber was performed via an auto-thermal extrusion process in which heat was generated during internal shearing of the material inside the extruder barrel. The processing, performance properties, and storage stability of modified reclaimed ground tire rubber were evaluated based on specific mechanical energy, infrared camera images, an oscillating disc rheometer, tensile tests, equilibrium swelling, gas chromatography combined with a flame ionization detector, and gas chromatography with mass spectrometry. It was found that the developed formulas of modified GTR allowed the preparation of materials characterized by tensile strengths in the range of 2.6-9.3 MPa and elongation at break in the range of 78-225%. Moreover, the prepared materials showed good storage stability for at least three months and satisfied processability with commercial rubbers (natural rubber, styrene-butadiene rubber).

9.
Polymers (Basel) ; 13(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921221

RESUMO

In this study, physicochemical and chemical methods of cellulose modification were used to increase the hydrophobicity of this natural semicrystalline biopolymer. It has been shown that acid hydrolysis of the initial cellulose increases its crystallinity, which improves hydrophobicity, but only to a small extent. A more significant hydrophobization effect was observed after chemical modification by esterification, when polar hydroxyl groups of cellulose were replaced by non-polar substituents. The esterification process was accompanied by the disruption of the crystalline structure of cellulose and its transformation into the mesomorphous structure of cellulose esters. It was found that the replacement of cellulose hydroxyls with ester groups leads to a significant increase in the hydrophobicity of the resulting polymer. Moreover, the increase of the number of non-polar groups in the ester substituent contributes to rise in hydrophobicity of cellulose derivative. Depending on the type of ester group, the hydrophobicity increased in the following order: acetate < propionate < butyrate. Therefore, tributyrate cellulose (TBC) demonstrated the most hydrophobicity among all studied samples. In addition, the mixed ester, triacetobutyrate cellulose (TAB), also showed a sufficiently high hydrophobicity. The promising performance properties of hydrophobic cellulose esters, TBC and TAB, were also demonstrated.

10.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255683

RESUMO

Currently, the recycling potential of wood waste (WW) is still limited, and in a resource efficiency approach, recycling WW in insulation materials, such as polyurethane (PUR), appears as an appropriate solution. It is known that the quality of WW is the main aspect which influences the stability of the final products. Therefore, the current study analyses different WW-based fillers as possible modifiers for polyurethane biocomposite foams for the application as loose-fill materials in building envelopes. During the study of WW-based fillers, it was determined that the most promising filler is wood scobs (WS) with a thermal conductivity of 0.0496 W/m·K, short-term water absorption by partial immersion-12.5 kg/m2, water vapour resistance-0.34 m2·h·Pa/mg and water vapour diffusion resistance factor-2.4. In order to evaluate the WS performance as a filler in PUR biocomposite foams, different ratios of PUR binder and WS filler (PURb/WS) were selected. It was found that a 0.40 PURb/WS ratio is insufficient for the appropriate wetting of WS filler while a 0.70 PURb/WS ratio produced PUR biocomposite foams with the most suitable performance: thermal conductivity reduced from 0.0523 to 0.0476 W/m·K, water absorption-from 5.6 to 1.3 kg/m2, while the compressive strength increased from 142 to 272 kPa and the tensile strength increased from 44 to 272 kPa.

11.
Materials (Basel) ; 13(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092105

RESUMO

Ground tire rubber (GTR) was reclaimed and modified with 10 phr of ethylene-vinyl acetate copolymer via low-temperature extrusion process. Processing, physico-mechanical properties, volatile organic compounds emission, and recycling possibility were investigated. In order to better understand the impact of used modifiers, their efficiency was compared with trans-polyoctenamer, which is an additive that is commercially dedicated to waste rubber recycling. The results showed that a relatively small amount of ethylene-vinyl acetate copolymer improves the mechanical properties of modified reclaimed GTR and also allows further recycling by multiple processing without the deterioration of performance after three cycles.

12.
J Coat Technol Res ; 17(1): 255-269, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32454951

RESUMO

Graphene oxide (GO) is a good nanofiller candidate for waterborne coatings because of its outstanding physical and mechanical properties, good dispersibility in water, and low cost relative to graphene. Here, we report on the performance of a one-part, waterborne polyurethane (WPU) nanocoating formulated with four different GO loadings ([0.4% to 2.0%] by mass). The degree of GO dispersion/adhesion was evaluated using scanning electron microscopy, laser scanning confocal microscopy, and Raman microscopy. Nanocoating performance was evaluated using a dynamic mechanical thermal analyzer for mechanical properties, a customized coulometric permeation apparatus for oxygen barrier properties, a combustion microcalorimeter for flammability, a hot disk analyzer for thermal conductivity, thermogravimetric analysis for thermal stability, and a moisture sorption analyzer for water uptake. The results show that GO sheets were well dispersed in, and have good adhesion to, WPU. At the higher mass loadings ([1.2% or 2%] by mass), GO increased the modulus and yield strength of WPU by 300% and 200%, respectively, increased the thermal conductivity by 38%, reduced the burning heat release rate (flammability) by 43%, and reduced the oxygen permeability by up to sevenfold. The presence of GO, however, increased water vapor uptake at high humidity; the moisture content of 2% mass loading GO/WPU nanocoatings at 90% RH was almost twice that of the moisture content for unfilled WPU. Overall, with the exception of water uptake at very high humidity (> 70% RH), the observed improvements in physical and mechanical properties combined with the ease of processing suggest that GO is a viable nanofiller for WPU coatings.

13.
Materials (Basel) ; 13(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245242

RESUMO

Currently, polyurethane foam producers come across the several problems when petroleum-based polyols are replaced with low functionality biomass, or waste-based, polyols. In addition, the dilemma is intensified with regulations that require full or partial replacement of blowing agents that can cause high ozone depletion with alternatives like water, which causes the formation of CO2. Therefore, these gases diffuse out of the foam so quickly that the polymeric cell walls cannot withstand the pressure, consequently causing huge dimensional changes at ambient temperature and humidity. Even though the theoretical stoichiometric balance is correct, the reality shows that it is not enough. Therefore, polyethylene terephthalate waste-based polyol was chosen as a low functionality polyol which was modified with high functionality sucrose-based polyol in order to obtain dimensionally stable polyurethane foams in the density range of 30-40 kg/m3. These more stable foams are characterized by linear changes no higher than 0.5%, short-term water absorption by partial immersion no higher than 0.35 kg/m2, and water vapor resistance factors up to 50. In order to obtain thermally efficient polyurethane foams, conventional blowing agents and water systems were implemented, thus, assuring thermal conductivity values in the range of 0.0198-0.0204 W/(m·K) and obtaining products which conform to all the requirements for performance of sprayed and factory-made polyurethane foam standards EN 14315-1 and EN 13165.

14.
Int J Biol Macromol ; 114: 599-613, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29588207

RESUMO

Unplasticized and glycerol plasticized chitosan/graphene (CS/GS) nanocomposites were synthesized via in situ chemical reduction of graphene oxide sheets (GO) with l-ascorbic acid (L-AA) as reductant by solution casting. The reduction of GO with L-AA was investigated to establish the optimal amount of reductant required to produce chemically reduced graphene sheets (GS). The combine effect of both nanofiller and glycerol on the structure, thermal, mechanical, and electrical properties of CS/GS nanocomposite films was evaluated. Materials were characterized by FT-IR, NMR, UV-Vis, XPS, XRD, Raman, SEM, TEM, and TGA. The results showed that GS sheets were homogeneously dispersed throughout the CS matrix, and that interactions between CS and the surface of GS took place. When compared with neat CS, nanocomposites showed a decrease in the crystallinity, better thermal stability under oxidative atmosphere, and improved mechanical properties, while maintained the thermal properties of CS under inert conditions. Combined use of glycerol and GS led to substantially enhanced mechanical properties. The electrical conductivity was increased with increasing GS loading in nanocomposite. This study demonstrates how CS/GS nanocomposites performance properties can be tailored by controlling GsS and plasticizer content.


Assuntos
Quitosana/química , Glicerol/química , Grafite/química , Nanocompostos/química , Plastificantes/química , Ácido Ascórbico/química , Oxirredução
15.
Des Monomers Polym ; 20(1): 177-189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491791

RESUMO

Commercially used industrial baking enamels consist of alkyd or polyester resin with melamine formaldehyde. These resins are mainly derived from fossil resources. Considering growing environmental legislation regarding use of petroleum based raw materials, utilization of renewable resources to synthesize various chemistries can be the only obvious option as far as academia and industries are concerns. The present work deals with exploration of one of the natural resources (Cardanol) for polyol synthesis, its characterization (FTIR and NMR) and its curing behavior with melamine formaldehyde resin by differential scanning calorimetry (DSC). The optimized formulations from DSC study were further evaluated for general coating properties to study the suitability of developed polyol for industrial coating application. The experimental studies revealed that melamine content in the curing mixtures and thereby developed crosslinking density played an important role in deciding the coatings properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA