Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 76: 103312, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39173539

RESUMO

Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2⁺) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⁺ and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.

2.
J Cell Biochem ; 125(6): e30579, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38747370

RESUMO

Lipid droplets are organelles with unique spherical structures. They consist of a hydrophobic neutral lipid core that varies depending on the cell type and tissue. These droplets are surrounded by phospholipid monolayers, along with heterogeneous proteins responsible for neutral lipid synthesis and metabolism. Additionally, there are specialized lipid droplet-associated surface proteins. Recent evidence suggests that proteins from the perilipin family (PLIN) are associated with the surface of lipid droplets and are involved in their formation. These proteins have specific roles in hepatic lipid droplet metabolism, such as protecting the lipid droplets from lipase action and maintaining a balance between lipid storage and utilization in specific cells. Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of lipid droplets in more than 5% of the hepatocytes. This accumulation can progress into metabolic dysfunction-associated steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The accumulation of hepatic lipid droplets in the liver is associated with the progression of MASLD and other diseases such as sarcopenic obesity. Therefore, it is crucial to understand the role of perilipins in this accumulation, as these proteins are key targets for developing novel therapeutic strategies. This comprehensive review aims to summarize the structure and characteristics of PLIN proteins, as well as their pathogenic role in the development of hepatic steatosis and fatty liver diseases.


Assuntos
Homeostase , Gotículas Lipídicas , Metabolismo dos Lipídeos , Perilipinas , Humanos , Gotículas Lipídicas/metabolismo , Perilipinas/metabolismo , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/metabolismo
3.
Cell Div ; 19(1): 14, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643120

RESUMO

BACKGROUND: Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages. Given this evidence and our prior studies establishing a correlation between cancer radiation resistance and an increased number of cytoplasmic Lipid Droplets (LDs), we investigated if LD accumulation was modulated along the cell cycle and if this correlated with differential radioresistance in lung and bladder cell lines. RESULTS: Our findings identified the S phase as the most radioresistant cell cycle phase being characterized by an increase in LDs. Analysis of the expression of perilipin genes (a family of proteins involved in the LD structure and functions) throughout the cell cycle also uncovered a unique gene cell cycle pattern. CONCLUSIONS: In summary, although these results require further molecular studies about the mechanisms of radioresistance, the findings presented here are the first evidence that LD accumulation could participate in cancer cells' ability to better survive X-Ray radiation when cells are in the S phase. LDs can represent new players in the radioresistance processes associated with cancer metabolism. This could open new therapeutic avenues in which the use of LD-interfering drugs might enhance cancer sensitivity to radiation.

4.
Antioxidants (Basel) ; 13(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397807

RESUMO

Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.

5.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958873

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is defined as the accumulation of lipids in the form of lipid droplets in more than 5% of hepatocytes. It is regarded as a range of diverse pathologies, including simple steatosis and steatohepatitis. The structural characteristics of lipid droplets, along with their protein composition, mainly including perilipins, have been implicated in the etiology of the disease. These proteins have garnered increasing attention as a pivotal regulator since their levels and distinct expression appear to be associated with the progression from simple steatosis to steatohepatitis. Perilipins are target proteins of chaperone-mediated autophagy, and their degradation is a prerequisite for lipolysis and lipophagy to access the lipid core. Both lipophagy and chaperone-mediated autophagy have significant implications on the development of the disease, as evidenced by their upregulation during the initial phases of simple steatosis and their subsequent downregulation once steatosis is established. On the contrary, during steatohepatitis, the process of chaperone-mediated autophagy is enhanced, although lipophagy remains suppressed. Evidently, the reduced levels of autophagic pathways observed in simple steatosis serve as a defensive mechanism against lipotoxicity. Conversely, in steatohepatitis, chaperone-mediated autophagy fails to compensate for the continuous generation of small lipid droplets and thus cannot protect hepatocytes from lipotoxicity.


Assuntos
Autofagia Mediada por Chaperonas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Hepatócitos/metabolismo , Autofagia/fisiologia , Perilipinas/metabolismo , Fígado/metabolismo
6.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568828

RESUMO

Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.

7.
Front Cell Dev Biol ; 11: 1116491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465010

RESUMO

Lipid droplets (LDs) serve as intracellular stores of energy-rich neutral lipids. LDs form at discrete sites in the endoplasmic reticulum (ER) and they remain closely associated with the ER during lipogenic growth and lipolytic consumption. Their hydrophobic neutral lipid core is covered by a monolayer of phospholipids, which harbors a specific set of proteins. This LD surface is coated and stabilized by perilipins, a family of soluble proteins that specifically target LDs from the cytosol. We have previously used chimeric fusion proteins between perilipins and integral ER membrane proteins to test whether proteins that are anchored to the ER bilayer could be dragged onto the LD monolayer. Expression of these chimeric proteins induces repositioning of the ER membrane around LDs. Here, we test the properties of membrane-anchored perilipins in cells that lack LDs. Unexpectedly, membrane-anchored perilipins induce expansion and vesiculation of the perinuclear membrane resulting in the formation of crescent-shaped membrane domains that harbor LD-like properties. These domains are stained by LD-specific lipophilic dyes, harbor LD marker proteins, and they transform into nascent LDs upon induction of neutral lipid synthesis. These ER domains are enriched in diacylglycerol (DAG) and in ER proteins that are important for early steps of LD biogenesis, including seipin and Pex30. Formation of the domains in vivo depends on DAG levels, and we show that perilipin 3 (PLIN3) binds to liposomes containing DAG in vitro. Taken together, these observations indicate that perilipin not only serve to stabilize the surface of mature LDs but that they are likely to exert a more active role in early steps of LD biogenesis at ER subdomains enriched in DAG, seipin, and neutral lipid biosynthetic enzymes.

8.
Anat Rec (Hoboken) ; 306(5): 983-1010, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36516055

RESUMO

Lipid droplets (LDs) are distinct morphological markers of hepatic stellate cells (HSCs). They are composed of a core of predominantly retinyl esters and triacylglycerols surrounded by a phospholipid layer; the latter harbors perilipins 2, 3, and 5, which help control LD lipolysis. Electron microscopy distinguishes between Types I and II LDs. Type I LDs are surrounded by acid phosphatase-positive lysosomes, which likely digest LDs. LD count and retinoid concentration are modulated by vitamin A intake. Alcohol consumption depletes hepatic retinoids and HSC LDs, with concomitant transformation of HSCs to fibrogenic myofibroblast-like cells. LD loss and accompanying HSC activation occur in HSC cell culture models. Loss of LDs is a consequence of and not a prerequisite for HSC activation. LDs are endowed with enzymes for synthesizing retinyl esters and triacylglycerols as well as neutral lipases and lysosomal acid lipase for breaking down LDs. HSCs have two distinct metabolic LD pools: an "original" pool in quiescent HSCs and a "new" pool emerging in HSC activation; this two-pool model provides a platform for analyzing LD dynamics in HSC activation. Besides lipolysis, LDs are degraded by lipophagy; however, the coordination between and relative contributions of these two pathways to LD removal are unclear. While induction of autophagy accelerates LD loss in quiescent HSCs and promotes HSC activation, blocking autophagy impairs LD degradation and inhibits HSC activation and fibrosis. This article is a critique of five decades of investigations into the morphology, molecular structure, synthesis, and degradation of LDs associated with HSC activation and fibrosis.


Assuntos
Células Estreladas do Fígado , Gotículas Lipídicas , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Gotículas Lipídicas/metabolismo , Ésteres de Retinil/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fibrose , Triglicerídeos/metabolismo , Retinoides
9.
Int J Biol Sci ; 18(16): 6020-6034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439875

RESUMO

A lipid droplet (LD) is an organelle that consists of a phospholipid monolayer and a neutral lipid core, with proteins embedded in or attached to its surface. Until recently, cancers had long been regarded as genetic disorders with the abnormal activation of oncogenes and inactivation of tumor suppressor genes before their quality of a metabolic disorder began to be recognized. The last decade has witnessed the recognition of several metabolic characteristics of cancer cells, among which one is the accumulation of lipid droplets; therefore, attention has been given to exploring the role of LDs in carcinomas. In addition, there has been a remarkable expansion in understanding the complexity of LD's function in cellular homeostasis, including but not limited to energy supply, endoplasmic reticulum (ER) stress and oxidative stress management, or lipotoxicity alleviation. Thus, lipid droplet-associated proteins, which to a great extent determine the dynamics of a lipid droplet, have attracted the interest of numerous cancer researchers and their potential as cancer diagnostic biomarkers and therapeutic targets has been affirmed by emerging evidence. In this review, we systematically summarize the critical role of LDs in cancer and then focus on four categories of lipid droplet-associated proteins having the most direct influence on LD biosynthesis (diacylglycerol acyltransferase 1 (DGAT1) and diacylglycerol acyltransferase 2 (DGAT2)), degradation (adipose triglyceride lipase (ATGL)), and two renowned protein families on the LD surface (perilipins and cell death-inducing DNA fragmentation factor alpha-like effectors (CIDEs)). In this way, we aim to highlight their important role in tumor progression and their potential in clinical applications.


Assuntos
Gotículas Lipídicas , Neoplasias , Gotículas Lipídicas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas/metabolismo , Homeostase , Estresse do Retículo Endoplasmático , Neoplasias/metabolismo
10.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364243

RESUMO

Many different amphibian skin peptides have been characterized and proven to exert various biological actions, such as wound-healing, immunomodulatory, anti-oxidant, anti-inflammatory and anti-diabetic effects. In this work, the possible anti-steatotic effect of macrotympanain A1 (MA1) (FLPGLECVW), a skin peptide isolated from the Chinese odorous frog Odorrana macrotympana, was investigated. We used a well-established in vitro model of hepatic steatosis, consisting of lipid-loaded rat hepatoma FaO cells. In this model, a 24 h treatment with 10 µg/mL MA1 exerted a significant anti-steatotic action, being able to reduce intracellular triglyceride content. Accordingly, the number and diameter of cytosolic lipid droplets (LDs) were reduced by peptide treatment. The expression of key genes of hepatic lipid metabolism, such as PPARs and PLINs, was measured by real-time qPCR. MA1 counteracted the fatty acid-induced upregulation of PPARγ expression and increased PLIN3 expression, suggesting a role in promoting lipophagy. The present data demonstrate for the first time a direct anti-steatotic effect of a peptide from amphibian skin secretion and pave the way to further studies on the use of amphibian peptides for beneficial actions against metabolic diseases.


Assuntos
Fígado Gorduroso , Ratos , Animais , Fígado Gorduroso/metabolismo , Ranidae/metabolismo , Pele/metabolismo , Peptídeos/farmacologia , Peptídeos/química , PPAR gama/metabolismo
11.
Metabolites ; 12(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144258

RESUMO

Obesity is a complex condition characterized by abnormal and excessive fat accumulation, resulting in an increased risk for severe health problems. Skeletal muscles play a major role in movement and fat catabolism, but the insulin resistance that comes with obesity makes it difficult to fulfill these tasks. In this study, we analyse two types of training protocols, moderate intensity continuous training (MICT) versus high intensity interval training (HIIT), in a cohort of obese subjects to establish which muscle adaptations favour fat consumption in response to exercise. Mitochondria play a role in fat oxidation. We found protein upregulation of mitochondrial biomarkers, TOMM20 and Cox-4, in HIIT but not in MICT, without detecting any shifts in fibre composition phenotype of the vastus lateralis in both training groups. Interestingly, both MICT and HIIT protocols showed increased protein levels of perilipin PLIN2, which is involved in the delivery and consumption of fats. HIIT also augmented perilipin PLIN5. Perilipins are involved in fat storage in skeletal muscles and their upregulation, along with the analysis of circulatory lipid profiles reported in the present study, suggest important adaptations induced by the two types of training protocols that favour fat consumption and weight loss in obese subjects.

12.
Vet Res Commun ; 46(4): 1175-1193, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35834072

RESUMO

Lipid droplets were identified as important players in biological processes of various tumor types. With emphasis on lipid droplet-coating proteins (perilipins, PLINs), this study intended to shed light on the presence and formation of lipid droplets in canine osteosarcoma. For this purpose, canine osteosarcoma tissue samples (n = 11) were analyzed via immunohistochemistry and electron microscopy for lipid droplets and lipid droplet-coating proteins (PLINs). Additionally, we used the canine osteosarcoma cell lines D-17 and COS4288 in 2D monolayer and 3D spheroid (cultivated for 7, 14, and 21 days) in vitro models, and further analyzed the samples by means of histochemistry, immunofluorescence, molecular biological techniques (RT-qPCR, Western Blot) and electron microscopical imaging. Lipid droplets, PLIN2, and PLIN3 were detected in osteosarcoma tissue samples as well as in 2D and 3D cultivated D-17 and COS4288 cells. In spheroids, specific distribution patterns of lipid droplets and perilipins were identified, taking into consideration cell line specific zonal apportionment. Upon external lipid supplementation (oleic acid), a rise of lipid droplet amount accompanied with an increase of PLIN2 expression was observed. Detailed electron microscopical analyzes revealed that lipid droplet sizes in tumor tissue were comparable to that of 3D spheroid models. Moreover, the biggest lipid droplets were found in the central zone of the spheroids at all sampling time-points, reaching their maximum size at 21 days. Thus, the 3D spheroids can be considered as a relevant in vitro model for further studies focusing on lipid droplets biology and function in osteosarcoma.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Cães , Animais , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Perilipinas/metabolismo , Técnicas de Cultura de Células em Três Dimensões/veterinária , Perilipina-2/metabolismo , Osteossarcoma/veterinária , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Neoplasias Ósseas/veterinária , Neoplasias Ósseas/metabolismo
13.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35260890

RESUMO

Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids for energy metabolism, membrane synthesis and production of lipid-derived signaling molecules. While compositional differences in the phospholipid monolayer or neutral lipid core of LDs impact their metabolism and function, the proteome of LDs has emerged as a major influencer in all aspects of LD biology. The perilipins (PLINs) are the most studied and abundant proteins residing on the LD surface. This Cell Science at a Glance and the accompanying poster summarize our current knowledge of the common and unique features of the mammalian PLIN family of proteins, the mechanisms through which they affect cell metabolism and signaling, and their links to disease.


Assuntos
Gotículas Lipídicas , Perilipinas , Animais , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Mamíferos/metabolismo , Perilipinas/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Proteoma/metabolismo
14.
J Lipid Res ; 63(5): 100194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35283217

RESUMO

Lipid droplets (LDs) are multifunctional organelles that regulate energy storage and cellular homeostasis. The first step of triacylglycerol hydrolysis in LDs is catalyzed by adipose triglyceride lipase (ATGL), deficiency of which results in lethal cardiac steatosis. Although hormone-sensitive lipase (HSL) functions as a diacylglycerol lipase in the heart, we hypothesized that activation of HSL might compensate for ATGL deficiency. To test this hypothesis, we crossed ATGL-KO (AKO) mice and cardiac-specific HSL-overexpressing mice (cHSL) to establish homozygous AKO mice and AKO mice with cardiac-specific HSL overexpression (AKO+cHSL). We found that cardiac triacylglycerol content was 160-fold higher in AKO relative to Wt mice, whereas that of AKO+cHSL mice was comparable to the latter. In addition, AKO cardiac tissues exhibited reduced mRNA expression of PPARα-regulated genes and upregulation of genes involved in inflammation, fibrosis, and cardiac stress. In contrast, AKO+cHSL cardiac tissues exhibited expression levels similar to those observed in Wt mice. AKO cardiac tissues also exhibited macrophage infiltration, apoptosis, interstitial fibrosis, impaired systolic function, and marked increases in ceramide and diacylglycerol contents, whereas no such pathological alterations were observed in AKO+cHSL tissues. Furthermore, electron microscopy revealed considerable LDs, damaged mitochondria, and disrupted intercalated discs in AKO cardiomyocytes, none of which were noted in AKO+cHSL cardiomyocytes. Importantly, the life span of AKO+cHSL mice was comparable to that of Wt mice. HSL overexpression normalizes lipotoxic cardiomyopathy in AKO mice and the findings highlight the applicability of cardiac HSL activation as a therapeutic strategy for ATGL deficiency-associated lipotoxic cardiomyopathies.


Assuntos
Cardiomiopatias , Esterol Esterase , Animais , Cardiomiopatias/metabolismo , Fibrose , Lipase/genética , Lipase/metabolismo , Lipólise , Camundongos , Miócitos Cardíacos/metabolismo , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
15.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274690

RESUMO

Both peroxisomes and lipid droplets regulate cellular lipid homeostasis. Direct inter-organellar contacts as well as novel roles for proteins associated with peroxisome or lipid droplets occur when cells are induced to liberate fatty acids from lipid droplets. We have shown a non-canonical role for a subset of peroxisome-assembly [Peroxin (Pex)] proteins in this process in Drosophila. Transmembrane proteins Pex3, Pex13 and Pex14 were observed to surround newly formed lipid droplets. Trafficking of Pex14 to lipid droplets was enhanced by loss of Pex19, which directs insertion of transmembrane proteins like Pex14 into the peroxisome bilayer membrane. Accumulation of Pex14 around lipid droplets did not induce changes to peroxisome size or number, and co-recruitment of the remaining Peroxins was not needed to assemble peroxisomes observed. Increasing the relative level of Pex14 surrounding lipid droplets affected the recruitment of Hsl lipase. Fat body-specific reduction of these lipid droplet-associated Peroxins caused a unique effect on larval fat body development and affected their survival on lipid-enriched or minimal diets. This revealed a heretofore unknown function for a subset of Pex proteins in regulating lipid storage. This article has an associated First Person interview with Kazuki Ueda, joint first author of the paper.


Assuntos
Drosophila , Gotículas Lipídicas , Animais , Drosophila/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Lipídeos , Proteínas de Membrana/metabolismo , Peroxinas , Peroxissomos/metabolismo
16.
Appl Physiol Nutr Metab ; 47(4): 343-356, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35061523

RESUMO

Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Humanos , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Triglicerídeos/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-34822977

RESUMO

Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics. Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM. Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.


Assuntos
Gotículas Lipídicas
18.
Neuropathol Appl Neurobiol ; 48(1): e12756, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34312912

RESUMO

AIMS: Perilipins are conserved proteins that decorate intracellular lipid droplets and are essential for lipid metabolism. To date, there is limited knowledge on their expression in human brain or their involvement in brain aging and neurodegeneration. The aim of this study was to characterise the expression levels of perilipins (Plin1-Plin5) in different cerebral areas from subjects of different age, with or without signs of neurodegeneration. METHODS: We performed real-time RT-PCR, western blotting, immunohistochemistry and confocal microscopy analyses in autoptic brain samples of frontal and temporal cortex, cerebellum and hippocampus from subjects ranging from 33 to 104 years of age, with or without histological signs of neurodegeneration. To test the possible relationship between Plins and inflammation, correlation analysis with IL-6 expression was also performed. RESULTS: Plin2, Plin3 and Plin5, but not Plin1 and Plin4, are expressed in the considered brain areas with different intensities. Plin2 appears to be expressed more in grey matter, particularly in neurons in all the areas analysed, whereas Plin3 and Plin5 appear to be expressed more in white matter. Plin3 seems to be expressed more in astrocytes. Only Plin2 expression is higher in old subjects and patients with early tauopathy or Alzheimer's disease and is associated with IL-6 expression. CONCLUSIONS: Perilipins are expressed in human brain but only Plin2 appears to be modulated with age and neurodegeneration and linked to an inflammatory state. We propose that the accumulation of lipid droplets decorated with Plin2 occurs during brain aging and that this accumulation may be an early marker and initial step of inflammation and neurodegeneration.


Assuntos
Doença de Alzheimer , Perilipinas , Envelhecimento , Encéfalo/metabolismo , Humanos , Perilipina-2/metabolismo , Perilipinas/metabolismo
19.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34028531

RESUMO

Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.


Assuntos
Gotículas Lipídicas , Proteínas de Membrana , Animais , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Fosfolipídeos , Saccharomyces cerevisiae
20.
Med Oncol ; 38(10): 116, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410522

RESUMO

Lipid metabolism reprogramming is one of the adaptive events that drive tumor development and survival, and may account for resistance to chemotherapeutic drugs. Perilipins are structural proteins associated with lipophagy and lipid droplet integrity, and their overexpression is associated with tumor aggressiveness. Here, we sought to explore the role of lipid droplet-related protein perilipin-3 (PLIN3) in prostate cancer (PCa) chemotherapy. We investigated the role of PLIN3 suppression in docetaxel cytotoxic activity in PCa cell lines. Additional effects of PLIN3 depletion on autophagy-related proteins and gene expression patterns, apoptotic potential, proliferation rate, and ATP levels were examined. Depletion of PLIN3 resulted in docetaxel resistance, accompanied by enhanced autophagic flux. We further assessed the synergistic effect of autophagy suppression with chloroquine on docetaxel cytotoxicity. Inhibition of autophagy with chloroquine reversed chemoresistance of stably transfected shPLIN3 PCa cell lines, with no effect on the parental ones. The shPLIN3 cell lines also exhibited reduced Caspase-9 related apoptosis initiation. Moreover, we assessed PLIN3 expression in a series of PCa tissue specimens, were complete or partial loss of PLIN3 expression was frequently noted in 70% of the evaluated specimens. Following PLIN3 silencing, PCa cells were characterized by impaired lipophagy and acquired an enhanced autophagic response upon docetaxel-induced cytotoxic stress. Such an adaptation leads to resistance to docetaxel, which could be reversed by the autophagy blocker chloroquine. Given the frequent loss of PLIN3 expression in PCa specimens, we suggest that combination of docetaxel with chloroquine may improve the efficacy of docetaxel treatment in PLIN3-deficient cancer patients.


Assuntos
Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Perilipina-3/genética , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Masculino , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA