RESUMO
In Triatoma infestans it was observed pyrethroid resistance attributed in part to an elevated oxidative metabolism mediated by cytochromes P450. The nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays a crucial role in catalysing the electron transfer from NADPH to all cytochrome P450s. The daily variations in the expression of CPR gene and a P450 gene (CYP4EM7), both associated with insecticide resistance, suggested that their expressions would be under the endogenous clock control. To clarify the involvement of the clock in orchestration of the daily fluctuations in CPR and CYP4M7 genes expression, it was proposed to investigate the effect of silencing the clock gene period (per) by RNA interference (RNAi). The results obtained allowed to establish that the silencing of per gene was influenced by intake schemes used in the interference protocols. The silencing of per gene in T. infestans reduced its expression at all the time points analysed and abolished the characteristic rhythm in the transcriptional expression of per mRNA. The effect of the per gene silencing in the expression profiles at the transcriptional level of CPR and CYP4EM7 genes showed the loss of rhythmicity and demonstrated the biological clock involvement in the regulation of t heir expression.
Assuntos
Ritmo Circadiano , Resistência a Inseticidas , Interferência de RNA , Triatoma , Animais , Triatoma/genética , Triatoma/efeitos dos fármacos , Resistência a Inseticidas/genética , Ritmo Circadiano/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Vetores de DoençasRESUMO
DNA aptamers can bind specifically to biomolecules to modify their function, potentially making them ideal oligonucleotide therapeutics. Herein, we screened for DNA aptamer of melanopsin (OPN4), a blue-light photopigment in the retina, which plays a key role using light signals to reset the phase of circadian rhythms in the central clock. Firstly, 15 DNA aptamers of melanopsin (Melapts) were identified following eight rounds of Cell-SELEX using cells expressing melanopsin on the cell membrane. Subsequent functional analysis of each Melapt was performed in a fibroblast cell line stably expressing both Period2:ELuc and melanopsin by determining the degree to which they reset the phase of mammalian circadian rhythms in response to blue-light stimulation. Period2 rhythmic expression over a 24-h period was monitored in Period2:ELuc stable cell line fibroblasts expressing melanopsin. At subjective dawn, four Melapts were observed to advance phase by >1.5 h, while seven Melapts delayed phase by >2 h. Some Melapts caused a phase shift of approximately 2 h, even in the absence of photostimulation, presumably because Melapts can only partially affect input signaling for phase shift. Additionally, some Melaps were able to induce phase shifts in Per1::luc transgenic (Tg) mice, suggesting that these DNA aptamers may have the capacity to affect melanopsin in vivo. In summary, Melapts can successfully regulate the input signal and shifting phase (both phase advance and phase delay) of mammalian circadian rhythms in vitro and in vivo.
RESUMO
The Period (PER) gene family is one of the core components of the circadian clock, with substantial correlations between the PER genes and cancers identified in extensive researches. Abnormal mutations in PER genes can influence cell function, metabolic activity, immunity, and therapy responses, thereby promoting the initiation and development of cancers. This ultimately results in unequal cancers progression and prognosis in patients. This leads to variable cancer progression and prognosis among patients. In-depth studies on the interactions between the PER genes and cancers can reveal novel strategies for cancer detection and treatment. In this review, we aim to provide a comprehensive overview of the latest research on the role of the PER gene family in cancer.
RESUMO
Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.
Assuntos
Relógios Circadianos , Daphnia , Fotoperíodo , Processos de Determinação Sexual , Animais , Daphnia/genética , Daphnia/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Feminino , MasculinoAssuntos
Aniversários e Eventos Especiais , Ritmo Circadiano , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mutação , Proteínas Circadianas Period/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Circadianas Period/genéticaRESUMO
In most organisms, various physiological and behavioral functions are expressed rhythmically. Previous studies have shown that thermoperiod is an important factor affecting circadian clock-related genes that regulate insect locomotor activity. Bradysia odoriphaga Yang & Zhang is an underground pest that attacks more than 30 crops but is especially damaging to Chinese chives. In this study, we analyzed the adult eclosion time and period (Boper) gene expression in B. odoriphaga as affected by temperature (cycling vs constant temperature), insect stage, and tissue specific. We found that the eclosion time and expression of the Boper gene changed during the temperature cycle but not under a constant temperature. Silencing of Boper expression significantly decreased the adult eclosion rate and significantly increased adult mortality and malformation. The findings indicate that thermoperiod alters Boper expression and regulates the eclosion rhythm.
Assuntos
Cebolinha-Francesa , Dípteros , Animais , Ritmo Circadiano/genética , Dípteros/genética , Expressão Gênica , Nematóceros , TemperaturaRESUMO
Lutzomyia longipalpis sensu lato is a complex of phlebotomine sand fly species, which are widespread in the Neotropics. They have a great medico-veterinary importance due their role as vectors of Leishmania infantum, the causative agent of visceral leishmaniasis. Morphological variations of Lu. longipalpis s.l. males were reported in the late 1960s in Brazil. Male populations can present either one pair of spots on third abdominal tergites or two pairs on third and fourth ones, namely 1S and 2S phenotypes, respectively. Since then, there has been much interest on the taxonomic status of Lu. longipalpis s.l. Thereafter, several lines of evidence have been congruent in suggesting the existence of an uncertain number of cryptic species within Lu. longipalpis s.l. in Brazil. Herein, a 525 bp-fragment of the period gene was used for assessing the genetic structure and phylogenetic relationship of Lu. longipalpis s.l. populations in Brazil. We performed two set of analyses, first we originally sequenced three populations (Passira, Santarém and Teresina) of Lu. longipalpis s.l. and compared them. Thereafter, we performed a global analysis including in our dataset other three pairs of sympatric populations of Lu. longipalpis s.l. from three Brazilian localities available in GenBank. Fixed single nucleotide polymorphisms (SNPs) sharing, maximum likelihood inference, genetic structure and haplotype analyses revealed the presence of two genetic groups, one composed of Teresina population, and the other encompassing Passira and Santarém populations. The global analysis reflected the first of its kind, and two prominent groups were observed: the clade I comprising Teresina 1S, Bodocó 1S, Caririaçu 1S and Sobral 1S; and the clade II encompassing Passira 2S, Santarém 1S, Bodocó 2S, Caririaçu 2S and Sobral 2S. Genetic differentiation data suggested a limited gene flow between populations of the clade I versus clade II. Our results disclosed the presence of two prominent genetic groups, which could reasonably represent populations of Lu. longipalpis s.l. whose males produce the same courtship song.
Assuntos
Genética Populacional , Psychodidae , Animais , Sequência de Bases , Brasil , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Psychodidae/genéticaRESUMO
As complexities of addictive behaviors cannot be fully captured in laboratory studies, scientists use simple addiction-associated phenotypes and measure them in laboratory animals. Locomotor sensitization, characterized by an increased behavioral response to the same dose of the drug, has been extensively used to elucidate the genetic basis and molecular mechanisms of neuronal plasticity. However, to what extent it contributes to the development of addiction is not completely clear. We tested if the development of locomotor sensitization to methamphetamine affects voluntary self-administration, and vice versa, in order to investigate how two drug-associated phenotypes influence one another. In our study, we used the genetically tractable model organism, Drosophila melanogaster, and quantified locomotor sensitization and voluntary self-administration to methamphetamine using behavioral tests that were developed and adapted in our laboratory. We show that flies express robust locomotor sensitization to the second dose of volatilized methamphetamine, which significantly lowers preferential self-administration of methamphetamine. Naive flies preferentially self-administer food with methamphetamine over plain food. Exposing flies to volatilized methamphetamine after voluntary self-administration abolishes locomotor sensitization. We tested period null (per01 ) mutant flies and showed that they do not develop locomotor sensitization, nor do they show preferential self-administration of methamphetamine. Our results suggest that there may be partially overlapping neural circuitry that regulates the expression of locomotor sensitization and preferential self-administration to methamphetamine and that this circuitry requires a functional per gene.
Assuntos
Estimulantes do Sistema Nervoso Central/efeitos adversos , Locomoção/efeitos dos fármacos , Metanfetamina/efeitos adversos , Atividade Motora/efeitos dos fármacos , Animais , Comportamento Aditivo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Drosophila melanogaster , Masculino , Metanfetamina/administração & dosagem , AutoadministraçãoRESUMO
General anaesthesia (GA) is implicated as a cause of postoperative sleep disruption and fatigue with part of the disturbance being attributed to a shift of the circadian clock. In this study, Drosophila melanogaster was used as a model to determine how Isoflurane affects the circadian clock at the behavioural and molecular levels. We measured the response of the clock at both of these levels caused by different durations and different concentrations of Isoflurane at circadian time 4 (CT4). Once characterized, we held the duration and concentration constants (at 2% in air for 6 h) and calculated the phase responses over the entire circadian cycle in both activity and period expression. Phase advances in behaviour were observed during the subjective day, whereas phase delays were associated with subjective night time GA interventions. The corresponding pattern of gene expression preceded the behavioural pattern by approximately four hours. We discuss the implications of this effect for clinical and research practice.
RESUMO
ID2 is a rhythmically expressed helix-loop-helix transcriptional repressor, and its deletion results in abnormal properties of photoentrainment. By examining parametric and nonparametric models of entrainment, we have started to explore the mechanism underlying this circadian phenotype. Id2-/- mice were exposed to differing photoperiods, and the phase angle of entrainment under short days was delayed 2 h as compared with controls. When exposed to long durations of continuous light, enhanced entrainment responses were observed after a delay of the clock but not with phase advances. However, the magnitude of phase shifts was not different in Id2-/- mice tested in constant darkness using a discrete pulse of saturating light. No differences were observed in the speed of clock resetting when challenged by a series of discrete pulses interspaced by varying time intervals. A photic phase-response curve was constructed, although no genotypic differences were observed. Although phase shifts produced by discrete saturating light pulses at CT16 were similar, treatment with a subsaturating pulse revealed a ~2-fold increase in the magnitude of the Id2-/- shift. A corresponding elevation of light-induced per1 expression was observed in the Id2-/- suprachiasmatic nucleus (SCN). To test whether the phenotype is based on a sensitivity change at the level of the retina, pupil constriction responses were measured. No differences were observed in responses or in retinal histology, suggesting that the phenotype occurs downstream of the retina and retinal hypothalamic tract. To test whether the phenotype is due to a reduced amplitude of state variables of the clock, the expression of clock genes per1 and per2 was assessed in vivo and in SCN tissue explants. Amplitude, phase, and period length were normal in Id2-/- mice. These findings suggest that ID2 contributes to a photoregulatory mechanism at the level of the SCN central pacemaker through control of the photic induction of negative elements of the clock.
Assuntos
Ritmo Circadiano/efeitos da radiação , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Luz , Animais , Feminino , Proteína 2 Inibidora de Diferenciação/deficiência , Masculino , Camundongos , Estimulação Luminosa , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efeitos da radiaçãoRESUMO
Circadian clock system disorders can lead to uncontrolled cell proliferation, but the molecular mechanism remains unknown. We used a Bombyx mori animal model of single Period gene (BmPer) expression to investigate this mechanism. A slow growing developmental cell model (Per-KD) was isolated from a B. mori ovarian cell line (BmN) by continuous knock down of BmPer expression. The effects of BmPer expression knockdown (Per-KD) on cell proliferation and apoptosis were opposite to those of m/hPer1 and m/hPer2 in mammals. The knockdown of BmPer expression led to cell cycle deceleration with shrinking of the BmN cell nucleus, and significant inhibition of nuclear DNA synthesis and cell proliferation. It also promoted autophagy via the lysosomal pathway, and accelerated apoptosis via the caspase pathway.
RESUMO
Several physiological activities of organisms are coordinated based on periodic variations of ~24 h, which is called a circadian rhythm. Circadian rhythms, driven by circadian clock genes, play an important role in the regulation of various complex life activities of organisms, in an orderly and coordinated manner. Period (Per)1/2/3 genes are important core clock genes and part of the Per gene family. Current research has demonstrated that the abnormal expression of Per genes and disruption of circadian rhythms can lead to the occurrence and development of cancer; however, the exact mechanism has not yet been elucidated. Further study on this mechanism may lead to the discovery of new, effective therapies for the prevention and treatment of cancer. The present review summarizes the status of current research with regards to the association between the abnormal expression and rhythmic variation of the Per gene family, and carcinogenesis and progression of cancer.
RESUMO
The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker, integrating environmental input to align physiological and behavioral rhythms to local time cues. Approximately 10% of SCN neurons express vasoactive intestinal polypeptide (VIP); however, it is unknown how firing activity of VIP neurons releases VIP to entrain circadian rhythms. To identify physiologically relevant firing patterns, we optically tagged VIP neurons and characterized spontaneous firing over 3 days. VIP neurons had circadian rhythms in firing rate and exhibited two classes of instantaneous firing activity. We next tested whether physiologically relevant firing affected circadian rhythms through VIP release. We found that VIP neuron stimulation with high, but not low, frequencies shifted gene expression rhythms in vitro through VIP signaling. In vivo, high-frequency VIP neuron activation rapidly entrained circadian locomotor rhythms. Thus, increases in VIP neuronal firing frequency release VIP and entrain molecular and behavioral circadian rhythms. VIDEO ABSTRACT.
Assuntos
Potenciais de Ação/fisiologia , Ritmo Circadiano/fisiologia , Neurônios do Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Técnicas de Cultura de Órgãos , Núcleo Supraquiasmático/metabolismoRESUMO
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
RESUMO
Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as ß-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Relógios Circadianos , Comportamento Alimentar , Hipercolesterolemia/etiologia , Fígado/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Ácidos Graxos/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Corpos Cetônicos/sangue , Cetose/sangue , Cetose/etiologia , Cetose/metabolismo , Cetose/patologia , Lipase/metabolismo , Lipoproteínas LDL/sangue , Fígado/enzimologia , Fígado/patologia , Masculino , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Distribuição Aleatória , Ratos WistarRESUMO
Although the suprachiasmatic nucleus (SCN) has long been considered the master circadian clock in mammals, the topology of the connections that synchronize daily rhythms among SCN cells is not well understood. We combined experimental and computational methods to infer the directed interactions that mediate circadian synchrony between regions of the SCN. We analyzed PERIOD2 (PER2) expression from SCN slices during and after treatment with tetrodotoxin, allowing us to map connections as cells resynchronized their daily cycling following blockade and restoration of cell-cell communication. Using automated analyses, we found that cells in the dorsal SCN stabilized their periods slower than those in the ventral SCN. A phase-amplitude computational model of the SCN revealed that, to reproduce the experimental results: (1) the ventral SCN had to be more densely connected than the dorsal SCN and (2) the ventral SCN needed strong connections to the dorsal SCN. Taken together, these results provide direct evidence that the ventral SCN entrains the dorsal SCN in constant conditions.
Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Luciferases/metabolismo , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/fisiologia , Algoritmos , Animais , Arginina Vasopressina/metabolismo , Luciferases/genética , Medições Luminescentes/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Proteínas Circadianas Period/genética , Bloqueadores dos Canais de Sódio/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo , Tetrodotoxina/farmacologia , Peptídeo Intestinal Vasoativo/metabolismoRESUMO
Stern has criticized a body of work from several groups that have independently studied the so-called "Kyriacou and Hall" courtship song rhythms of male Drosophila melanogaster, claiming that these ultradian â¼60-s cycles in the interpulse interval (IPI) are statistical artifacts that are not modulated by mutations at the period (per) locus [Stern DL (2014) BMC Biol 12:38]. We have scrutinized Stern's raw data and observe that his automated song pulse-detection method identifies only â¼50% of the IPIs found by manual (visual and acoustic) monitoring. This critical error is further compounded by Stern's use of recordings with very little song, the large majority of which do not meet the minimal song intensity criteria which Kyriacou and Hall used in their studies. Consequently most of Stern's recordings only contribute noise to the analyses. Of the data presented by Stern, only perL and a small fraction of wild-type males sing vigorously, so we limited our reanalyses to these genotypes. We manually reexamined Stern's raw song recordings and analyzed IPI rhythms using several independent time-series analyses. We observe that perL songs show significantly longer song periods than wild-type songs, with values for both genotypes close to those found in previous studies. These per-dependent differences disappear when the song data are randomized. We conclude that Stern's negative findings are artifacts of his inadequate pulse-detection methodology coupled to his use of low-intensity courtship song records.
Assuntos
Corte , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Proteínas Circadianas Period/genética , Reprodução/fisiologia , Vocalização Animal/fisiologia , Acústica , Animais , Feminino , Genótipo , Masculino , Mutação , Comportamento Sexual Animal/fisiologia , SoftwareRESUMO
BACKGROUND: Many diurnal animals exhibit a mid-day 'siesta', generally thought to be an adaptive response aimed at minimizing exposure to heat on warm days, suggesting that in regions with cooler climates mid-day siestas might be a less prominent feature of animal behavior. Drosophila melanogaster exhibits thermal plasticity in its mid-day siesta that is partly governed by the thermosensitive splicing of the 3'-terminal intron (termed dmpi8) from the key circadian clock gene period (per). For example, decreases in temperature lead to progressively more efficient splicing, which increasingly favors activity over sleep during the mid-day. In this study we sought to determine if the adaptation of D. melanogaster from its ancestral range in the lowlands of tropical Africa to the cooler temperatures found at high altitudes involved changes in mid-day sleep behavior and/or dmpi8 splicing efficiency. RESULTS: Using natural populations of Drosophila melanogaster from different altitudes in tropical Africa we show that flies from high elevations have a reduced mid-day siesta and less consolidated sleep. We identified a single nucleotide polymorphism (SNP) in the per 3' untranslated region that has strong effects on dmpi8 splicing and mid-day sleep levels in both low and high altitude flies. Intriguingly, high altitude flies with a particular variant of this SNP exhibit increased dmpi8 splicing efficiency compared to their low altitude counterparts, consistent with reduced mid-day siesta. Thus, a boost in dmpi8 splicing efficiency appears to have played a prominent but not universal role in how African flies adapted to the cooler temperatures at high altitude. CONCLUSIONS: Our findings point towards mid-day sleep behavior as a key evolutionary target in the thermal adaptation of animals, and provide a genetic framework for investigating daytime sleep in diurnal animals which appears to be driven by mechanisms distinct from those underlying nighttime sleep.
Assuntos
Ritmo Circadiano/genética , Drosophila melanogaster/fisiologia , Íntrons , Sono , Temperatura , Aclimatação , Adaptação Fisiológica/genética , África , Altitude , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Splicing de RNA , Sono/genéticaRESUMO
Circadian clocks keep organisms in synchrony with external day-night cycles. The free running period (FRP) of the clock, however, is usually only close to-not exactly-24 h. Here, we explored the geographical variation in the FRP of the linden bug, Pyrrhocoris apterus, in 59 field-lines originating from a wide variety of localities representing geographically different environments. We have identified a remarkable range in the FRPs between field-lines, with the fastest clock at ~21 h and the slowest close to 28 h, a range comparable to the collections of clock mutants in model organisms. Similarly, field-lines differed in the percentage of rhythmic individuals, with a minimum of 13.8% and a maximum of 86.8%. Although the FRP correlates with the latitude and perhaps with the altitude of the locality, the actual function of this FRP diversity is currently unclear. With the recent technological progress of massive parallel sequencing and genome editing, we can expect remarkable progress in elucidating the genetic basis of similar geographic variants in P. apterus or in similar emerging model species of chronobiology.
Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Heterópteros/fisiologia , Atividade Motora/fisiologia , Tilia/parasitologia , Animais , Europa (Continente) , Europa Oriental , Feminino , Geografia , Heterópteros/classificação , Heterópteros/genética , Israel , Masculino , Filogenia , Fatores de TempoRESUMO
Endogenous circadian clocks with ~24-h periodicity are found in most organisms from cyanobacteria to humans. Daylight synchronizes these clocks to solar time. In humans, shift-work and jet lag perturb clock synchronization, and such perturbations, when repeated or chronic, are strongly suspected to be detrimental to healthspan. Here we investigated locomotor aging and longevity in Drosophila melanogaster with genetically or environmentally disrupted clocks. We compared two mutations in period (per, a gene essential for circadian rhythmicity in Drosophila), after introducing them in a common reference genetic background: the arrhythmic per01, and perT which displays robust short 16-h rhythms. Compared to the wild type, both per mutants showed reduced longevity and decreased startle-induced locomotion in aging flies, while spontaneous locomotor activity was not impaired. The per01 phenotypes were generally less severe than those of perT, suggesting that chronic jet lag is more detrimental to aging than arrhythmicity in Drosophila. Interestingly, the adjustment of environmental light-dark cycles to the endogenous rhythms of the perT mutant fully suppressed the acceleration in the age-related decline of startle-induced locomotion, while it accelerated this decline in wild-type flies. Overall, our results show that chronic jet lag accelerates a specific form of locomotor aging in Drosophila, and that this effect can be alleviated by environmental changes that ameliorate circadian rhythm synchronization.