Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Insect Mol Biol ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39381854

RESUMO

Nearly all insects harbour bacterial communities that can have a profound effect on their life history, including regulating and shaping host metabolism, development, immunity and fitness. The bacteriomes of several coleopterans have been described; however, very little has been reported for wireworms. These long-lived larvae of click beetles (Coleoptera: Elateridae) are major agricultural pests of a variety of crops grown in the Canadian Prairies. Consequently, the goal of this study was to characterise the bacteriomes of five of the most significant pest species within the region: Limonius californicus, Hypnoidus abbreviatus, H. bicolor, Aeolus mellillus and Dalopius spp. To do this, we collected larvae from southern Manitoba fields (pre-seeding) and carried out 16S rRNA sequencing on individual specimens. Our results indicate wireworms have diverse and taxon-rich bacterial communities, with over 400 genera identified predominately from the phyla Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes. However, each species had nine or fewer genera comprising >80% of their bacteriome. Network analyses revealed some community structuring consistent among species, which may culminate in shaping/regulating host biology. Moreover, the microbial signatures were influenced by both ontogeny (early vs. late stage larvae) and reproductive strategy (sexual vs. parthenogenetic), with a myriad of other factors likely contributing to bacterial diversity that are impossible to resolve from our study. Overall, this metagenomics study represents the first to characterise the bacteriomes of wireworms in the Canadian Prairies and the findings could assist in the development of sustainable management strategies for these important agricultural pests.

2.
Front Insect Sci ; 4: 1385653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359692

RESUMO

Introduction: Cotton production in Tanzania is facing significant challenges due to insect pests that cause extensive damages to the crop. The most notable pests include the African bollworm (Heliothis armigera Hubner), Spiny bollworm (Earias biplaga Walker), Cotton stainers (Dysdercus sidae (Herrich-Schaeffer), Cotton Aphids (Aphis gossypii Glover), Thrips (Thrips tabaci Lindeman), Jassids (Amrasca biguttula, Bigutula), Leafhoppers (Cicadellidae jassidae), and Whiteflies (Bemisia tabaci Genn). If left uncontrolled, these pests can cause up to 60% damage to the crop. Despite the importance of cotton and the fact that most of these pests are endemic, there are scanty knowledge on the dynamics and distribution of cotton pests across the seasons of the year and crop's phenological growth stages (germination, vegetative growth, flowering and boll formation) in areas under repeated cultivation of the crop in Tanzania. Here we report on the influence of seasons and cotton's phenological stages on the abundance, diversity, distribution and richness of cotton insect pests. Methods: The study was conducted in the Misungwi district for two cotton-growing seasons, using the UKM08 cotton variety. Stick traps and handpicking methods were deployed in catching the cotton insect pests. Results: On average, a total of 8,500 insect specimen of diverse families and species were collected every season. The four dominant species among the collected were Aphis gossypii (17.37%), Amrasca biguttula (11.42%), Nezara viridura (10.7%), and Bemisia tabacci (10.68%). Both cotton phenological growth stages and seasons significantly (p<0.05) influenced the abundance, diversity, distribution and richness of cotton insect pests. In particular, the phenological growth stage 3 exhibited greater diversity of insect pests. The pests' distribution patterns remained relatively uniform across the crop growth stages. Discussion: Findings from the present study could contribute to developing sustainable pest management strategies in areas under repeated cotton production in Tanzania and elsewhere.

3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39375012

RESUMO

Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts' phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Furthermore, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.


Assuntos
Hemípteros , Simbiose , Animais , Hemípteros/microbiologia , Resistência a Inseticidas , Inseticidas/farmacologia , Oryza/microbiologia , Oryza/parasitologia , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/fisiologia , Ninfa/microbiologia
4.
Curr Issues Mol Biol ; 46(10): 11086-11123, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39451539

RESUMO

The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.

5.
Sensors (Basel) ; 24(20)2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39460219

RESUMO

Combining near-earth remote sensing spectral imaging technology with unmanned aerial vehicle (UAV) remote sensing sensing technology, we measured the Ningqi No. 10 goji variety under conditions of health, infestation by psyllids, and infestation by gall mites in Shizuishan City, Ningxia Hui Autonomous Region. The results indicate that the red and near-infrared spectral bands are particularly sensitive for detecting pest and disease conditions in goji. Using UAV-measured data, a remote sensing monitoring model for goji pest and disease was developed and validated using near-earth remote sensing hyperspectral data. A fully connected neural network achieved an accuracy of over 96.82% in classifying gall mite infestations, thereby enhancing the precision of pest and disease monitoring in goji. This demonstrates the reliability of UAV remote sensing. The pest and disease remote sensing monitoring model was used to visually present predictive results on hyperspectral images of goji, achieving data visualization.


Assuntos
Tecnologia de Sensoriamento Remoto , Dispositivos Aéreos não Tripulados , Tecnologia de Sensoriamento Remoto/métodos , Animais , Redes Neurais de Computação , Doenças das Plantas/parasitologia , Imageamento Hiperespectral/métodos , Monitoramento Ambiental/métodos
6.
Insects ; 15(10)2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39452399

RESUMO

The sweet potato [Ipomoea batatas (L.) Lam] is considered one of the most important crops in the world as food, fodder, and raw material for starch and alcohol production. Sweet potato consumption and demand for its value-added products have increased significantly over the past two decades, leading to new cultivars, expansion in acreage, and increased demand in the United States and its export markets. Due to its health benefits, sweet potato production has multiplied over the past decade in Brazil, promoting food security and economic development in rural areas. Their adaptability and nutritional value make them a food of great importance for Brazil. As pest attacks and disease infection are the main limiting aspects that often cause yield loss and quality degradation in sweet potatoes, there is a great demand to develop effective defense strategies to maintain productivity. There is a critical need for research into non-pesticide control approaches that can provide safe, cost-effective, sustainable, and environmentally friendly pest and disease management techniques. Pests which feed on roots have trade implications worldwide. For example, sweet potato tuber shipments infested with the sweet potato weevil are generally not allowed for trade in North and South America.

7.
J Therm Biol ; 125: 103992, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39418723

RESUMO

Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.

8.
J Pest Sci (2004) ; 97(4): 2073-2085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323576

RESUMO

Benefits provided by urban trees are increasingly threatened by non-native pests and pathogens. Monitoring of these invasions is critical for the effective management and conservation of urban tree populations. However, a shortage of professionally collected species occurrence data is a major impediment to assessments of biological invasions in urban areas. We applied data from iNaturalist to develop a protocol for monitoring urban biological invasions using the polyphagous shot hole borer (PSHB) invasion in two urban areas of South Africa. iNaturalist records for all known PSHB reproductive host species were used together with data on localities of sites for processing plant biomass to map priority monitoring areas for detecting new and expanding PSHB infestations. Priority monitoring areas were also identified using the distribution of Acer negundo, a highly susceptible host that serves as a sentinel species for the detection of PSHB infestations. iNaturalist data provided close to 9000 observations for hosts in which PSHB is known to reproduce in our study area (349 of which were A. negundo). High-priority areas for PSHB monitoring include those with the highest density of PSHB reproductive hosts found close to the 140 plant biomass sites identified. We also identified high-priority roads for visual and baited trap surveys, providing operational guidance for practitioners. The monitoring protocol developed in this study highlights the value of citizen or community science data in informing the management of urban biological invasions. It also advocates for the use of platforms such as iNaturalist as essential tools for conservation monitoring in urban landscapes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-024-01744-7.

9.
Heliyon ; 10(18): e38156, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347434

RESUMO

White mango scale (WMS) Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) is a polyphagous armored scale insect which is considered one of the key pests of mango (Mangifera indica L.) around the world. Mango is widely grown in Ethiopia whereas its production is challenged by WMS in the last decade. Effective formulations that could help manage the scale as part of IPM practice were sought from field experiments at Seka mango farm, Ethiopia in 2019 and 2020 seasons. The study aimed to evaluate the efficacy of some formulations against WMS on mango trees. Randomized complete block designs with three replications were used for the experiments and each tree served as a plot. Allocation of each treatment within each replication was done randomly. The treatments were applied sequentially three times at 14 days interval using motorized Knapsack sprayer coinciding with peak period of natural infestation. Scale numbers before and after each spray were counted using a microscope with LCD. Sum of live crawler, female and male was registered as WMS count data. Results showed that dimethoate, diazinon, imidacloprid & λ-cyhalothrin sprayed alone; dimethoate rotated with imidacloprid & λ-cyhalothrin, chlorpyrifos-ethyl rotated with paraffin, and diazinon rotated with azadirachtin, caused total mortality of the scales. The results also showed that, chlorpyrifos-ethyl, deltamethrin, paraffin oil and λ-cyhalothrin sprayed alone caused percent reduction with range 83-95 % in both seasons. Hence, the study revealed that dimethoate, diazinon, imidacloprid & λ-cyhalothrin applied individually, dimethoate rotated with imidacloprid & λ-cyhalothrin, chlorpyrifos-ethyl rotated with paraffin and diazinon rotated with azadirachtin fully protect mango trees from WMS and significantly superior to other treatments. Therefore, chemical control of A. tubercularis may consider the use of these materials as foliar application and can be used as components for integrated pest management plans for WMS. However, application in the form of rotation is preferred to the alone spray as the former could substantially reduce the likelihood of inducing pesticide resistance. Cost implications and effects of the products on the natural enemy and residual toxicity in fruits need to be studied.

10.
Insects ; 15(9)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39336674

RESUMO

Xyleborus beetles, a diverse group of ambrosia beetles, present challenges to forestry and agriculture due to their damaging burrowing behavior and symbiotic relationships with fungi. This review synthesizes current knowledge on the biology, ecology, and management of Xyleborus. We explore the beetles' life cycle, reproductive strategies, habitat preferences, and feeding habits, emphasizing their ecological and economic impacts. Control and management strategies, including preventive measures, chemical and biological control, and integrated pest management (IPM), are critically evaluated. Recent advances in molecular genetics and behavioral studies offer insights into genetic diversity, population structure, and host selection mechanisms. Despite progress, managing Xyleborus effectively remains challenging. This review identifies future research needs and highlights innovative control methods, such as biopesticides and pheromone-based trapping systems.

11.
Insects ; 15(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336699

RESUMO

Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most important aphid crop pests, due to its direct damage and its ability to transmit viral diseases in crops. The objective is to test whether spraying nanoemulsions of botanical products repels winged individuals of M. persicae in a bioassay in culture chambers. The bioactive volatiles were applied on pepper plants at a dose of 0.2% alone or at 0.1% of each component in blends. A treated plant and a control plant were placed at each side of an entomological cage inside a growth chamber. The winged individuals were released between the plants, in a black-painted Petri dish suspended by wires in the upper half of the cage. The most repellent products were farnesol (repellency index, RI = 40.24%), (E)-anethole (RI = 30.85%) and coconut fatty acid methyl ester (coconut FAME) (RI = 28.93%), alone or in the following blends: farnesol + (E)-anethole + distilled lemon oil (RI = 36.55%) or (E)-anethole + distilled lemon oil + coconut FAME (RI = 30.63%). The observed effect of coconut FAME on aphids is the first report of this product having a repellent effect on a crop pest. Repellent substances for viral disease vectors should be further investigated to develop new strategies for plant protection.

12.
Evol Appl ; 17(9): e70014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328186

RESUMO

Current pest management relies extensively on pesticide application worldwide, despite the frequent rise of pesticide resistance in crop pests. This is particularly worrisome because resistance is often not costly enough to be lost in populations after pesticide application, resulting in increased dependency on pesticide application. As climate warming increases, effort should be put into understanding how heat tolerance will affect the persistence of pesticide resistance in populations. To address this, we measured heat tolerance in two populations of the spider mite crop pest Tetranychus urticae that differ in the presence or absence of a target-site mutation conferring resistance to etoxazole pesticide. We found that developmental time and fertility, but not survival, were negatively affected by increasing temperatures in the susceptible population. Furthermore, we found no difference between resistant and susceptible populations in all life-history traits when both sexes developed at control temperature, nor when females developed at high temperature. Resistant heat-stressed males, in contrast, showed lower fertility than susceptible ones, indicating a sex-specific trade-off between heat tolerance and pesticide resistance. This suggests that global warming could lead to reduced pesticide resistance in natural populations. However, resistant females, being as affected by high temperature as susceptible individuals, may buffer the toll in resistant male fertility, and the shorter developmental time at high temperatures may accelerate adaptation to temperature, the pesticide or the cost thereof. Ultimately, the complex dynamic between these two factors will determine whether resistant populations can persist under climate warming.

13.
Pest Manag Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324448

RESUMO

BACKGROUND: Forest ecosystems are under constant threat from wood-boring pests such as the Emerald ash borer (EAB), which remain elusive owing to their hidden life cycles within tree trunks. Early detection is vital to mitigate economic and ecological damage. The main current monitoring method is manual detection which is ineffective at early stages of infestation. This study introduces VibroEABNet, a deep learning-based joint recognition network designed to enhance the detection of EAB boring vibration signals, with a novel approach integrating denoising and recognition modules. RESULTS: The proposed VibroEABNet model demonstrated exceptional performance, achieving an average accuracy of 98.98% across multiple signal-to-noise ratios (SNRs) in test datasets and a remarkable 97.5% accuracy in real forest datasets, surpassing traditional models and other deep learning networks evaluated in this study. These findings were supported by rigorous noise resistance analysis and real dataset evaluation, indicating the model's robustness and reliability in practical applications. Furthermore, the model's efficiency was highlighted by its inference time of 26 ms and a compact model size of 8.43 MB, underscoring its suitability for deployment in resource-limited environments. CONCLUSION: The development of VibroEABNet marks a significant advancement in pest detection methodologies, offering a scalable, accurate and efficient solution for early monitoring of wood-boring pests. The integration of a denoising module within the network structure addresses the challenge of environmental noise, one of the primary limitations in acoustic monitoring of pests. Currently, this research is limited to a specific pest. Future work will focus on the applicability of this network to other wood-boring pests. © 2024 Society of Chemical Industry.

14.
Front Plant Sci ; 15: 1445418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258298

RESUMO

Background: Cotton pests have a major impact on cotton quality and yield during cotton production and cultivation. With the rapid development of agricultural intelligence, the accurate classification of cotton pests is a key factor in realizing the precise application of medicines by utilize unmanned aerial vehicles (UAVs), large application devices and other equipment. Methods: In this study, a cotton insect pest classification model based on improved Swin Transformer is proposed. The model introduces the residual module, skip connection, into Swin Transformer to improve the problem that pest features are easily confused in complex backgrounds leading to poor classification accuracy, and to enhance the recognition of cotton pests. In this study, 2705 leaf images of cotton insect pests (including three insect pests, cotton aphids, cotton mirids and cotton leaf mites) were collected in the field, and after image preprocessing and data augmentation operations, model training was performed. Results: The test results proved that the accuracy of the improved model compared to the original model increased from 94.6% to 97.4%, and the prediction time for a single image was 0.00434s. The improved Swin Transformer model was compared with seven kinds of classification models (VGG11, VGG11-bn, Resnet18, MobilenetV2, VIT, Swin Transformer small, and Swin Transformer base), and the model accuracy was increased respectively by 0.5%, 4.7%, 2.2%, 2.5%, 6.3%, 7.9%, 8.0%. Discussion: Therefore, this study demonstrates that the improved Swin Transformer model significantly improves the accuracy and efficiency of cotton pest detection compared with other classification models, and can be deployed on edge devices such as utilize unmanned aerial vehicles (UAVs), thus providing an important technological support and theoretical basis for cotton pest control and precision drug application.

15.
Insect Sci ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292965

RESUMO

Hemiptera is one of the most significant orders of insect pests, including whiteflies, true bugs, aphids, planthoppers, psyllids, and so forth, which have led to substantial economic losses in agricultural industries and have significantly affected food yields through their ability to suck the phloem sap of crops and transmit numerous bacterial and viral pathogens. Therefore, explorations of pest-specific, eco-friendly and easy-to-adopt technologies for hemipteran pest control are urgently needed. To the best of our knowledge, microRNAs (miRNAs), which are endogenous non-coding small RNAs approximately 22 nucleotides in length, are involved in regulating gene expression via the direct recognition and binding of the 3'-untranslated region (3'-UTR) of target messenger RNAs (mRNAs) or by acting as a center of a competitive endogenous RNA (ceRNA) network at the post-transcriptional level. This review systematically outlines the characterization and functional investigation of the miRNA biogenesis pathway in hemipteran pests, such as whiteflies, true bugs, aphids and planthoppers. In addition, we explored the results of small RNA sequencing and functional observations of miRNAs in these pests, and the results suggest that the numerous miRNAs obtained and annotated via high-throughput sequencing technology and bioinformatic analyses contribute to molting development, fitness, wing polyphenism, symbiont interactions and insecticide resistance in hemipteran pests. Finally, we summarize current advances and propose a framework for future research to extend the current data and address potential limitations in the investigation and application of hemipteran miRNAs.

16.
Annu Rev Phytopathol ; 62(1): 127-156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251211

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.


Assuntos
Micorrizas , Imunidade Vegetal , Simbiose , Micorrizas/fisiologia , Plantas/imunologia , Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
17.
J Nanobiotechnology ; 22(1): 544, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237945

RESUMO

Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.


Assuntos
Hidróxidos , Interferência de RNA , RNA de Cadeia Dupla , Animais , Hidróxidos/química , Hidróxidos/farmacologia , Nanopartículas/química , Ninfa , Hemípteros , Folhas de Planta , Larva , Quitinases/metabolismo , Quitinases/genética , Citrus
18.
Environ Entomol ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305108

RESUMO

The increase in extreme climate events in recent years has been considered as an important factor affecting forest pests. Understanding the responses of forest pests to climate is helpful for revealing the trends in forest pest dynamics and proposing effective control measures. In this study, the relationship between the dynamics of all forest pests, independent forest diseases, and forest insect pests with the climate was evaluated in China, and the corresponding differences among forest pests, diseases and insect pests were assessed. Based on cross-wavelet transform and wavelet coherence analysis, the influences of teleconnection factors on the relationship between climate and forest pests were quantitatively analyzed to determine the roles of these factors. The results indicate that (i) three types of disasters in most parts of China have decreased from 1979 to 2019, while forest pests and forest insect pests in the southwestern region have increased; (ii) the relationship among Forest Pest Occurrence Area Rate and climate factors such as the Multivariate ENSO index, Southern Oscillation index, Arctic Oscillation (AO), Atlantic Multidecadal Oscillation (AMO), and Sunspot is more significant; (iii) the cycle is short in most regions, with oscillations in 2-4 years bands being the main variation periods of disasters in East, Central, and South China; (iv) There is a significant correlation between climate and disasters in the periods of 2-4 or 8-10 years. The AO, AMO, and Sunspot were important driving factors affecting the relationship between climate and disasters. Specifically, the Sunspot had the greatest impact among these factors.

19.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337614

RESUMO

Rhyzopertha dominica causes significant economic losses in stored cereals. Insects' digestive tract microbiome is crucial for their development, metabolism, resistance, and digestion. This work aimed to test whether the different chemical properties of different wheat and barley grain cultivars cause disturbances in insect foraging and rearrangements of the structure of the R. dominica microbiome. The results indicated that grain cultivars significantly influence the microbiome, metabolism, and insect foraging. Most observed traits and microbiome structures were not correlated at the species level, as confirmed by ANOSIM (p = 0.441). However, the PLS-PM analysis revealed significant patterns within barley cultivars. The study found associations between C18:2 fatty acids, entomopathogenic bacteria, an impaired nitrogen cycle, lysine production of bacterial origin, and insect feeding. The antioxidant effects also showed trends towards impacting the microbiome and insect development. The findings suggest that manipulating grain chemical properties (increasing C18:2 and antioxidant levels) can influence the R. dominica microbiome, disrupting their foraging behaviours and adaptation to storage environments. This research supports the potential for breeding resistant cereals, offering an effective pest control strategy and reducing pesticide use in food production.


Assuntos
Grão Comestível , Grão Comestível/microbiologia , Grão Comestível/parasitologia , Animais , Triticum/microbiologia , Triticum/parasitologia , Microbiota , Hordeum/microbiologia , Microbioma Gastrointestinal , Bactérias/metabolismo , Besouros
20.
Chem Biodivers ; : e202401382, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235587

RESUMO

Walnut yield and quality are often affected by beetle infestations, particularly those caused by Carpophilus truncatus (Murray) (Nitidulidae) and Oryzaephilus mercator (L.) (Silvanidae). Beetle damage exposes walnuts to microbial food spoilers such as Fusarium species. Insecticides currently used for beetle control are environmentally unfriendly. This work explored a green synthesis approach for copper oxide nanoparticles (CuO-NPs) in a basic medium at 30 °C by hydrolates, aqueous extracts obtained from Lippia integrifolia and Pimpinella anisum, denoted as CuO-I and CuO-A, respectively. Characterization through XRD, FT-IR, Raman, UV-visible absorbance, and AFM techniques indicated that CuO-A and CuO-I have a size ranging from 2-10 nm in height. The antifungal assay showed that both have a similar efficacy (MID=320 µg), 3-fold stronger than CuO- NPs obtained in absence of hydrolates (denoted CuO-W) (MID=960 µg), with the broadest inhibitory halos (ID=126-128 mm) observed for CuO-A. Insecticidal activity of CuO-NPs showed a concentration-dependent behavior, with CuO-I showing an effect comparable to that of diatomaceous earth. SEM images confirmed the adhesion of nanoparticles to insect surfaces, which could induce oxygen deprivation and disruption of metabolic processes. Both CuO-A and CuO-I are promising for their use in integrated pest control in walnut storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA