RESUMO
The effects of phenolic acid grafted-chitosan hydrocolloids (CS-g-GA/FA) on aldehyde contents from lipid oxidation in golden pompano fillets during pan-frying was investigated with an established high-performance liquid chromatography-mass spectrum method. Results indicated that pan-frying induced profound lipid oxidation and aldehydes generation with propanal, hexanal, nonanal, trans, trans-2,4-decadienal, and 4-hydroxy-2-nonenal as the abundant species. CS-g-FA and CS-g-GA effectively decreased their contents by 23.74-27.42 %, 61.69-67.42 %, 41.83-53.91 %, 29.91-48.79 %, and 61.57-65.39 % after 3 min. Most aldehyde contents decreased with the extension of pan-frying time due to the volatilization and reaction. In terms of substrate depletion, CS-g-phenolic acids effectively inhibited unsaturated fatty acids oxidation due to their decent antioxidant activity than CS. The significant lower retention rates of aldehydes in the CS-g-phenolic acids groups compared with control in chemical mode confirmed the carbonyl ammonia condensation. These results suggested that CS-g-phenolic acids serve as novel coating to reduce hazardous compounds during aquatic products thermal processing.
Assuntos
Aldeídos , Quitosana , Coloides , Hidroxibenzoatos , Oxirredução , Quitosana/química , Aldeídos/química , Animais , Coloides/química , Hidroxibenzoatos/química , Culinária , Peixes , Temperatura Alta , Alimentos Marinhos/análise , Lipídeos/químicaRESUMO
Wheat bran (WB) was solid-state fermented by either Lacticaseibacillus rhamnosus (LGG), Levilactobacillus brevis (LB) or Lactiplantibacillus plantarum (LP), respectively, and then their corresponding physicochemical and metabolic characteristics were investigated. Current study revealed fermentation of either Lacticaseibacillus rhamnosus or Lactiplantibacillus plantarum quickly generated lactic acid, but not for Levilactobacillus brevis. Importantly, all LAB fermentation promoted total phenolic acids contents, fermentation of LB-WB led to the greatest total phenolic content, followed by LGG-WB, with the least for LP-WB. Moreover, LGG fermentation significantly increased levels of oleic acid, stearic acid and phosphoenolpyruvic acid on carbon metabolism and fatty acid biosynthesis, while LB fermentation mainly increased levels of L-phenylalanine, cholecalciferol, D-gluconic acid and D-glucarate with the influence on the entire metabolic pathway. In contrast, LP fermentation significantly decreased levels of alpha-ketoglutaric acid, cis-aconitic acid on the citrate cycle (TCA cycle). This study revealed their corresponding metabolic characteristics, which might highlight potentially individual nutritional aspects.
Assuntos
Fibras na Dieta , Fermentação , Probióticos , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Probióticos/metabolismo , Probióticos/análise , Lacticaseibacillus rhamnosus/metabolismo , Levilactobacillus brevis/metabolismo , Levilactobacillus brevis/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/química , Triticum/microbiologiaRESUMO
Acanthopanax senticosus belongs to Araliaceae family and is traditionally used as a tonic. The roots and stems are mainly used as treatments for hypodynamia, rheumatism, and hypertension, but their frequent use may lead to extinction. However, comprehensive and simultaneous analysis of the remaining parts were still limited. There is a need to reorganize them for standardization of functional foods. In this study, 50 phenolic compounds and 82 triterpenoid saponins from the shoots, leaves, fruits, and stems of were characterized using UPLC-QTOF-MS and UPLC-QTRAP-MS/MS. Among them, 52 compounds were newly determined as the cis and malonyl-bound phenolic acids and were found to be structural isomers of Acanthopanax flavonoids and saponins. All compounds were absolutely/relatively quantified, and shoots had the highest content. Peroxynitrite and α-glucosidase inhibitory activities were performed, followed by evaluation of structure-activity relationships. Particularly, hederasaponin B and ciwujianoside B showed remarkable efficacy, which were affected by the C-23 hydroxylation, the C-20(29) double bond, and the presence of rhamnose. These detailed profiling can be used as fundamental data for increasing the utilization of A. senticosus and developing them into functional foods.
Assuntos
Antioxidantes , Eleutherococcus , Inibidores de Glicosídeo Hidrolases , Fenóis , Saponinas , Triterpenos , Saponinas/farmacologia , Saponinas/química , Eleutherococcus/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Antioxidantes/farmacologia , Antioxidantes/química , Triterpenos/química , Triterpenos/farmacologia , Fenóis/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Glucosidases/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Relação Estrutura-Atividade , Folhas de Planta/químicaRESUMO
This study explored the effect of geographical and floral origins on the antioxidant activities of Saudi honey samples related to their content of short peptides originated from honeybee proteins. The studied antioxidants were the total protein concentration, catalase activity, phenolic acids and flavonoids. The antioxidant activity assays included were the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the ferric reducing antioxidant power (FRAP) assay and Ascorbic acid Equivalent Antioxidant Capacity (AEAC). The studied honey samples were obtained from the southwestern region of Saudi Arabia, namely Asir (65) and Jazan (25). The floral origins of the honey samples were Acacia (51), Ziziphus (4) and polyfloral (35). The LC/MS technique was used to detect the short peptides and the mascot database was used to identify the short peptides, their precursor proteins and the protease enzymes that produce them. Jazan honey was characterized by high number of short peptides. The short peptides were originated from honeybee proteins by the action of proteases from the honeybees and bacteria. The antioxidant activity of the honey samples increase with the increase of their content of short peptides and proteins. The amino acids type and sequence of the short peptides qualify them to act as antioxidant, antimicrobial, anti-diabetic, anti-hypertension, immunomodulatory and cholesterol lowering peptides.
Assuntos
Antioxidantes , Mel , Peptídeos , Mel/análise , Antioxidantes/análise , Antioxidantes/farmacologia , Antioxidantes/química , Abelhas , Animais , Arábia Saudita , Peptídeos/análise , Peptídeos/química , Flavonoides/análise , Catalase/metabolismo , Compostos de Bifenilo/química , Hidroxibenzoatos/análise , Picratos/químicaRESUMO
SCOPE: Excessive activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome contributes to chronic inflammation. Thus, targeting NLRP3 inflammasome activation by anthocyanins may prevent inflammatory diseases. Therefore, the present study determines the influence of a black carrot extract (BCE) with high amounts of acylated anthocyanins and their related phenolic acids on the NLRP3 inflammasome. METHODS AND RESULTS: THP-1 monocytes are pretreated with a BCE, cyanidin-3-glucoside (C3G), or hydroxycinnamic acids. NLRP3 inflammasome assembly is initiated by priming THP-1 monocytes with lipopolysaccharide and/or activating the NLRP3 inflammasome with nigericin. Flow cytometry is used to assess apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, as well as ASC and NLRP3 protein expression. Caspase-1 activity is measured using a bioluminescent assay, and cytokine concentrations are determined by enzyme-linked immunosorbent assays (ELISA). C3G and phenolic acids diminish ASC and NLRP3 protein expression. In addition, C3G and phenolic acids attenuate ASC speck formation. Furthermore, the BCE and C3G decline caspase-1 activity. Consistently, IL-1ß and IL-18 secretion are reduced upon NLRP3 inflammasome activation. CONCLUSION: The present study shows that a BCE with high amounts of acylated anthocyanins and their related phenolic acids diminish priming and activation of the NLRP3 inflammasome in THP-1 monocytes.
RESUMO
Shell-by-Shell (SbS)-functionalized NPs can be tailor-made by combining a metal oxide NP core of choice with any desired phosphonic acids and amphiphiles as 1st or 2nd ligand shell building blocks. The complementary composition of such highly hierarchical structures makes them interesting candidates for various biomedical applications, as certain active ingredients can be incorporated into the structure. Here, we used TiO2 and CoFe2O4 NPs as drug delivery tools and coated them with a hexadecylphosphonic acid and with hexadecyl ammonium phenolates (caffeate, p-coumarate, ferulate), that possess anticancer as well as antioxidant properties. These architectures were then incubated in 2D and 3D cell cultures of non-tumorigenic and tumorigenic breast cells and irradiated to study their anticancer effect. It was found that both, the functionalized TiO2 and CoFe2O4 NPs acted as strong protective agents in non-tumorigenic spheroids. In contrast, the functionalized CoFe2O4 NPs induce a higher damage in irradiated tumor spheroids compared to the functionalized TiO2 NPs. CoFe3O4 NPs act additionally as radiosensitizing agents to the tumor spheroids. The radio-enhancement of the CoFe2O4 NPs is due to the generation of highly toxic hydroxyl radicals during X-ray irradiation. The irradiation exposed the CoFe2O4 surface, releasing the anticancer drugs into the cytoplasm and making the surface Co2+ ions accessible. These surface ions catalyze the Fenton reaction. This combination of radiosensitizer and anticancer drug delivery proved to be a very effective nanotherapeutic in 2D and 3D cell cultures of breast cancer cells.
RESUMO
Glucose and lipid metabolism disorders are the core pathological mechanism of a variety of metabolic diseases, and the incidence of related diseases is increasing year by year, which seriously threatens human life and health. Traditional Chinese medicine with medicinal and edible properties refers to Chinese medicinal resources that have both medicinal and edible characteristics. Due to its safety and its health-promoting and medicinal functions, traditional Chinese medicine has received increasing attention in the development of functional health foods. Phenolic acids are important secondary metabolites that are ubiquitous in medicinal and edible homologous plants, and the regulation of glycolipid metabolism is an important activity and plays a key role in many diseases. In this paper, we focus on the alleviation of glycolipid disorders using MEHH phenolic acids, which regulate glucose metabolism and lipid metabolism, improve insulin resistance, inhibit inflammatory responses, alleviate oxidative stress, and regulate intestinal flora; additionally, we summarize the mechanism in order to provide a reference for MEHH phenolic acids in the treatment of glycolipid metabolism diseases.
Assuntos
Hidroxibenzoatos , Metabolismo dos Lipídeos , Plantas Comestíveis , Plantas Medicinais , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/química , Humanos , Plantas Medicinais/química , Plantas Comestíveis/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Glucose/metabolismo , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/metabolismo , Animais , Resistência à Insulina , Medicina Tradicional Chinesa , Transtornos do Metabolismo de Glucose/metabolismo , Transtornos do Metabolismo de Glucose/tratamento farmacológicoRESUMO
The lipophilization of polyphenols (phenolipids) may increase their affinity for membranes, leading to better antioxidant protection. Cholesteryl esters of caffeic, dihydrocaffeic, homoprotocatechuic and protocatechuic acids were synthetized in a one-step procedure with good to excellent yields of ~50-95%. After evaluation of their radical scavenging capacity by the DPPH method and establishing the anodic peak potential by cyclic voltammetry, their antioxidant capacity against AAPH-induced oxidative stress in soybean PC liposomes was determined. Their interaction with the liposomal membrane was studied with the aid of three fluorescence probes located at different depths in the membrane. The cholesteryl esters showed a better or similar radical scavenging capacity to that of α-tocopherol and a lower anodic peak potential than the corresponding parental phenolic acids. Cholesteryl esters were able to protect liposomes to a similar or greater extent than α-tocopherol. However, despite their antiradical capacity and being able to penetrate and orientate in the membrane in a parallel position to phospholipids, the antioxidant efficiency of cholesteryl esters was deeply dependent on the phenolipid polyphenolic moiety structure. When incorporated during liposome preparation, cholesteryl protocatechuate and caffeate showed more than double the activity of α-tocopherol. Thus, cholesteryl phenolipids may protect biomembranes against oxidative stress to a greater extent than α-tocopherol.
Assuntos
Antioxidantes , Lipossomos , Lipossomos/química , Antioxidantes/química , Antioxidantes/farmacologia , Ésteres do Colesterol/química , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologiaRESUMO
Chronic inflammatory diseases pose a substantial health challenge globally, significantly contributing to morbidity and mortality. Addressing this issue requires the use of effective anti-inflammatory strategies with fewer side effects than those provoked by currently used drugs. In this study, a range of phytochemicals (phenolic di-caffeoylquinic acid (Di-CQA), flavonoid cyanidin-3,5-diglucoside (Cy3,5DiG), aromatic isothiocyanate sinalbin (SNB) and aliphatic isothiocyanate sulforaphane (SFN)) sourced from vegetables and fruits underwent assessment for their potential anti-inflammatory activity. An in vitro model of human macrophage-like cells treated with a low dose of LPS to obtain a low degree of inflammation that emulates a chronic inflammation scenario revealed promising results. Cell viability and production of the key pro-inflammatory cytokines were assessed in the presence of various phytochemicals. The compounds Di-CQA and Cy-3,5-DiG, within low physiologically relevant doses, demonstrated notable anti-inflammatory effects by significantly reducing the production of key pro-inflammatory cytokines TNF-α and IL-6 without affecting cell viability. These findings underscore the potential of plant-derived bioactive compounds as valuable contributors to the prevention or treatment of chronic inflammatory diseases. These results suggest that these compounds, whether used individually or as part of natural mixtures, hold promise for their inclusion in nutritional interventions designed to mitigate inflammation in associated pathologies.
Assuntos
Anti-Inflamatórios , Sobrevivência Celular , Macrófagos , Compostos Fitoquímicos , Humanos , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Isotiocianatos/farmacologia , Lipopolissacarídeos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Linhagem Celular , SulfóxidosRESUMO
AIMS: The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS: We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS: Amyloid beta (Aß) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE: The retina has mechanisms to clear metabolic waste including Aß, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
RESUMO
A precursor feeding strategy was used for the first time in agitated microshoot cultures of Aronia × prunifolia. This strategy involved the addition of biogenetic precursors of simple phenolic acids (phenylalanine, cinnamic acid, and benzoic acid) and depsides (caffeic acid) into the culture media, with an assessment of its effect on the production of these bioactive compounds. The in vitro cultures were maintained in Murashige-Skoog medium (1 mg/L BAP and 1 mg/L NAA). Precursors at five concentrations (0.1, 0.5, 1.0, 5.0, and 10.0 mmol/L) were fed into the medium at the time of culture initiation (point "0") and independently on the 10th day of growth cycles. The contents of 23 compounds were determined in methanolic extracts of biomass collected after 20 days of growth cycles using an HPLC method. All extracts contained the same four depsides (chlorogenic, neochlorogenic, rosmarinic, and cryptochlorogenic acids) and the same four simple phenolic acids (protocatechuic, vanillic, caffeic, and syringic acids). Chlorogenic and neochlorogenic acids were the predominant compounds in all extracts (max. 388.39 and 263.54 mg/100 g d.w.). The maximal total contents of all compounds were confirmed after feeding with cinnamic acid (5 mmol/L, point "0") and caffeic acid (10 mmol/L, point "0"), which caused a 2.68-fold and 2.49-fold increase in the contents of the estimated compounds vs. control cultures (603.03 and 558.48 mg/100 g d.w., respectively). The obtained results documented the efficacy of the precursor feeding strategy in enhancing the production of bioactive compounds in agitated cultures of A. × prunifolia and suggest a potential practical application value.
Assuntos
Depsídeos , Hidroxibenzoatos , Photinia , Depsídeos/metabolismo , Hidroxibenzoatos/análise , Photinia/química , Cinamatos/metabolismo , Cinamatos/análise , Cinamatos/química , Meios de Cultura/química , Ácidos Cafeicos , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimentoRESUMO
Phenolic acids, essential compounds in whole grains, are renowned for their health-enhancing antioxidant and anti-inflammatory properties. Variations in concentration, particularly of hydroxybenzoic and hydroxycinnamic acids, are observed among grain types. Their antiobesity and antidiabetes effects are linked to their modulation of key signaling pathways like AMPK and PI3K, crucial for metabolic regulation and the body's response to inflammation and oxidative stress. Processing methods significantly influence phenolic acid content and bioavailability in whole grains. Thermal techniques like boiling, baking, or roasting can degrade these compounds, with loss influenced by processing conditions. Nonthermal methods such as germination, fermentation, or their combination, can protect or enhance phenolic acid content under ideal conditions. Novel nonthermal approaches like ultrahigh pressure (UHP), irradiation, and pulsed electric fields (PEF) show promise in preserving these compounds. Further research is needed to fully comprehend the impact mechanisms of these innovative methods on the nutritional and sensory attributes of cereals.
Assuntos
Manipulação de Alimentos , Hidroxibenzoatos , Grãos Integrais , Hidroxibenzoatos/análise , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Humanos , Grãos Integrais/química , Grãos Integrais/metabolismo , Manipulação de Alimentos/métodos , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/metabolismo , AnimaisRESUMO
The potentially wide application of Phenolic acids (PAs) in industries was severely limited by their inadequate solubility and stability in polar/non-polar media. To overcome these limits, studies on the enzymatic esterification of PAs with glycerol were carried out to reach a yield of 95% of phenolic acid glycerols (PAGs) under the following reaction conditions: 1:150 molar ratio of PAs to glycerol; 25% of Lipozyme 435 relative to the weight of total substrates; 80°C, 500 rpm, 86.7 kPa and 10 h. Three resulting PAGs including caffeoyl glycerol (CG), feruloyl glycerol (FG), and p-hydroxycinnamoyl glycerol (p-HCG) were confirmed by MS, 1H NMR and 13C NMR. Among them, CG showed a comparative free radical scavenging ability to CA, indicating its potential use as a water-soluble antioxidant alternative to CA for food and cosmetic applications.
Assuntos
Antioxidantes , Glicerol , Hidroxibenzoatos , Lipase , Solubilidade , Hidroxibenzoatos/química , Hidroxibenzoatos/síntese química , Esterificação , Antioxidantes/síntese química , Glicerol/química , Lipase/metabolismo , Lipase/química , Sequestradores de Radicais Livres/síntese química , Enzimas Imobilizadas , Água/químicaRESUMO
Root-knot nematodes (Meloidogyne spp.) have garnered significant attention from researchers due to their substantial damage to crops and worldwide distribution. However, controlling this nematode disease is challenging which results from limited chemical pesticides and biocontrol agents effective against them. Here, we demonstrate that pepper-rotation markedly reduces Meloidogyne incognita infection in cucumber and diminishes the presence of p-hydroxybenzoic acid in the soil, a compound known to exacerbate M. incognita infection. Pepper-rotation also structures the rhizobacterial community, leading to the colonization of two Pseudarthrobacter oxydans strains (RH60 and RH97) in the cucumber rhizosphere, facilitated by palmitic acid enrichment in pepper root exudates. Furthermore, both strains exhibit high nematocidal activity against M. incognita, and possess the ability to biosynthesize indoleacetic acid and biodegrade p-hydroxybenzoic acid. RH60 and RH97 additionally induce systemic resistance in cucumber plants and promote their growth. These data suggest that pepper root-exudate palmitic acid alleviates M. incognita infection by recruiting beneficial P. oxydans in the cucumber rhizosphere. Our analyses identify a novel chemical component in root exudates and uncover its pivotal role in crop rotation for disease attenuation, providing intriguing insights into the keystone function of root exudates in plant protection against root-knot nematode infection.
RESUMO
Free or conjugated aromatic/phenolic acids arise from the diet, endogenous metabolism of catecholamines (adrenaline, noradrenaline, dopamine), protein (phenylalanine, tyrosine), pharmaceuticals (aspirin, metaprolol) plus gut microbiota metabolism of dietary (poly)phenols and undigested protein. Quantitative data obtained with authentic calibrants for 112 aromatic/phenolic acids including phase-2 conjugates in human plasma, urine, ileal fluid, feces and tissues have been collated and mean/median values compared with in vitro bioactivity data in cultured cells. Ca 30% of publications report bioactivity at ≤1 µmol/L. With support from clinical studies, it appears that the greatest benefit might be produced in vascular tissues by C6-C3 metabolites, including some of gut microbiota origin and some phase-2 conjugates, 15 of which are 3',4'-disubstituted with multiple sources including caffeic acid and hesperetin, plus one unsubstituted and two mono-substituted examples which can originate from protein. There is an unexamined potential for synergy. Free-living and washout plasma data are scarce. Some metabolites have been overlooked, notably phenyl-lactic, phenyl-hydracrylic and phenyl-propanoic acids, especially those from amino acids plus glycine, hydroxy-glycine and glutamine conjugates. Phenolic acids and conjugates from multiple sources exhibit biological activities, some of which are likely relevant in vivo and link to biomarkers of health. Further targeted studies are justified.
RESUMO
Polyphenols, a major bioactive constituent in rice grain, require processing and digestion before being absorbed by human body. Free and bound phenolics, flavonoids and their antioxidant activities in non-pigmented, red and black rice after cooking and INFOGEST digestions of oral, gastric and intestinal phases were investigated. It showed that cooking caused great losses of polyphenols and antioxidant activity. Free ferulic, isoferulic and p-coumaric acid in most rice were highest at intestinal phase (p < 0.05). Bound ferulic acid in three colored rice, bound p-coumaric acid in black rice and catechin in red rice were higher at oral and/or gastric phase. After cooking, total flavonoids of non-pigmented and pigmented rice were highest at intestinal and gastric phase, respectively. Cyanidin-3-O-glucoside, peonidin-3-O-glucoside and quercetin peaked at intestinal phase in black rice. It suggested that black rice has a greater potential to be used in meal balance and functional product development.
RESUMO
Pollen and nectar consumed by honey bees contain plant secondary metabolites (PSMs) with vital roles in plant-insect interactions. While PSMs can be toxic to bees, they can also be health-promoting, e.g. by improving pesticide and pathogen tolerances. As xenobiotics, PSMs undergo post-ingestion chemical modifications that can affect their bioactivity and transmission to the brood. Despite the importance of understanding honey bee PSM metabolism and distribution for elucidating bioactivity mechanisms, these aspects remain largely unexplored. In this study, we used HPLC-MS/MS to profile 47 pollen PSMs in honey bees and larvae. Both adult bees and larvae had distinct PSM profiles that differed from their diet. This is likely due to post-ingestion metabolism and compound-dependent variations in PSM transmission to the brood via nurse bee jelly. Phenolic acids and flavonoid aglycones were most abundant in bees and larvae, whereas alkaloids, cyanogenic glycosides and diterpenoids had the lowest abundance despite being consumed in higher concentrations. This study documents larval exposure to a variety of PSMs for the first time, with concentrations increasing from early to late larval instars. Our findings provide novel insights into the post-ingestion fate of PSMs in honey bees, providing a foundation for further exploration of biotransformation pathways and PSM effects on honey bee health.
RESUMO
In this study, vortex-assisted liquid-liquid microextraction (VA-LLME) based on hydrophobic deep eutectic solvents (HDES) was used to efficiently and sustainably extract five phenolic acids and tetramethylpyrazine (TMP) from Shanxi aged vinegar (SAV). The VA-LLME technique was employed to investigate the extraction mechanism of HDES with the best extraction performance for the target compounds using a conductor-like screening model for real solvents (COSMO-RS). An artificial neural network combined with a genetic algorithm (ANN-GA) was developed to optimize the extraction conditions based on single-factor and response surface methodology, while also analyzing the interactive effects on the phenolic acids and TMP in the extracted solution during the extraction phase. The optimized conditions were determined, and the greenness of the procedure was evaluated using an analytical greenness metric, indicating that this technique can serve as a green alternative for the determination of phenolic acids and TMP in SAV.
RESUMO
Baby spinach is becoming increasingly popular as a salad ingredient and needs high fertiliser rates to grow well and attain higher-quality leaves (dark green leaves). Chemical fertilisers, especially nitrogen (N), boost yields. There are many risks associated with nitrogen fertilisation. Additionally, spinach contains phenolic compounds and carotenoids. Nitrogen fertilisation affects growth, development, yield and metabolites. This study examined the impact of lower concentrations of N (0, 30, 60, 90, 120, 150 mg/L) on yield and colour properties [light intensity (L*) colour coordinates, unique for green colour (a*) and yellow colour (b*)], as well as the impact of varying N concentrations on the total phenolic content and p-coumaric acid, quercetin, ferulic acid, kaempferol, lutein, zeaxanthin, ß-carotene and antioxidant activities in the baby spinach varieties 'Acadia', 'Crosstrek' and 'Traverse', and it was established that N fertilisation improves phytochemical bioaccessibility and antioxidant activity. In a split strip plot design, three baby spinach varieties were treated with different N concentrations, including 0, 30, 60, 90, 120 and 150 mg/L. For 40 days, three baby spinach varieties were grown on soilless Mikskaar Professional substrate 300. During both seasons, 'Crosstrek' had the highest fresh mass (921.4 g/m2, 856.3 g/m2) at 120 mg/L N, while 'Traverse' had the highest fresh mass at 554.8 g/m2 and at 564.3 g/m2 at 90 mg/L N and did not differ significantly from 90 to 150 mg/L N during either season. During both seasons, 'Acadia' at 90 mg/L N increased fresh mass to 599 g/m2 and 557.9 g/m2. The variety × N supply interaction significantly affected the leaf colour; chlorophyll content across seasons; the levels of bioactive compounds, p-coumaric acid, quercetin, ferulic acid, kaempferol, lutein, zeaxanthin and ß-carotene in spinach varieties; the in vitro bioaccessibility; and the antioxidant activity. Varietal differences influenced the bioaccessibility of phenolic compounds and carotenoid components. The appropriate N levels can be used during plant cultivation to optimise the bioaccessibility of this spinach variety. Thus, fertilising 'Traverse' with 90 mg/N mL increased the in vitro bioaccessibility of ß-carotene (35.2%), p-coumaric acid (7.13%), quercetin (8.29%) and ferulic acid (1.92%) without compromising the yield.
RESUMO
Cardiovascular diseases (CVDs) continue to be a major global health concern, representing a leading cause of morbidity and mortality. This review provides a comprehensive examination of CVDs, encompassing their pathophysiology, diagnostic biomarkers, advanced imaging techniques, pharmacological treatments, surgical interventions, and the emerging role of herbal remedies. The review covers various cardiovascular conditions such as coronary artery disease, atherosclerosis, peripheral artery disease, deep vein thrombosis, pulmonary embolism, cardiomyopathy, rheumatic heart disease, hypertension, ischemic heart disease, heart failure, cerebrovascular diseases, and congenital heart defects. The review presents a wide range of cardiac biomarkers such as troponins, C-reactive protein, CKMB, BNP, NT-proBNP, galectin, adiponectin, IL-6, TNF-α, miRNAs, and oxylipins. Advanced molecular imaging techniques, including chest X-ray, ECG, ultrasound, CT, SPECT, PET, and MRI, have significantly enhanced our ability to visualize myocardial perfusion, plaque characterization, and cardiac function. Various synthetic drugs including statins, ACE inhibitors, ARBs, ß-blockers, calcium channel blockers, antihypertensives, anticoagulants, and antiarrhythmics are fundamental in managing CVDs. Nonetheless, their side effects such as hepatic dysfunction, renal impairment, and bleeding risks necessitate careful monitoring and personalized treatment strategies. In addition to conventional therapies, herbal remedies have garnered attention for their potential cardiovascular benefits. Plant extracts and their bioactive compounds, such as flavonoids, phenolic acids, saponins, and alkaloids, offer promising cardioprotective effects and enhanced cardiovascular health. This review underscores the value of combining traditional and modern therapeutic approaches to improve cardiovascular outcomes. This review serves as a vital resource for researchers by integrating a broad spectrum of information on CVDs, diagnostic tools, imaging techniques, pharmacological treatments and their side effects, and the potential of herbal remedies.