Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.649
Filtrar
1.
Anim Microbiome ; 6(1): 64, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39501371

RESUMO

BACKGROUND: Gut microbes are important to the health and fitness of many animals. Many factors have been shown to affect gut microbial communities including diet, lifestyle, and age. Most animals have very complex physiologies, lifestyles, and microbiomes, making it virtually impossible to disentangle what factors have the largest impact on microbiota composition. Honeybees are an excellent model to study host-microbe interactions due to their relatively simple gut microbiota, experimental tractability, and eusociality. Worker honey bees have distinct gut microbiota from their queen mothers despite being close genetic relatives and living in the same environment. Queens and workers differ in numerous ways including development, physiology, pheromone production, diet, and behavior. In the prolonged absence of a queen or Queen Mandibular Pheromones (QMP), some but not all workers will develop ovaries and become "queen-like". Using this inducible developmental change, we aimed to determine if diet and/or reproductive development impacts the gut microbiota of honey bee workers. RESULTS: Microbiota-depleted newly emerged workers were inoculated with a mixture of queen and worker gut homogenates and reared under four conditions varying in diet and pheromone exposure. Three weeks post-emergence, workers were evaluated for ovary development and their gut microbiota communities were characterized. The proportion of workers with developed ovaries was increased in the absence of QMP but also when fed a queen diet (royal jelly). Overall, we found that diet, rather than reproductive development or pheromone exposure, led to more "queen-like" microbiota in workers. However, we revealed that diet alone cannot explain the microbiota composition of workers. CONCLUSION: The hypothesis that reproductive development explains microbiota differences between queens and workers was rejected. We found evidence that diet is one of the main drivers of differences between the gut microbial community compositions of queens and workers but cannot fully explain the distinct microbiota of queens. Thus, we predict that behavioral and other physiological differences dictate microbiota composition in workers and queens. Our findings not only contribute to our understanding of the factors affecting the honey bee microbiota, which is important for bee health, but also illustrate the versatility and benefits of utilizing honeybees as a model system to study host-microbe interactions.

2.
Plant Sci ; : 112314, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39491728

RESUMO

German chamomile (Matricaria chamomilla L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (E)-ß-farnesene (EßF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones. In this study, two EßF synthase (ßFS) genes (McßFS1 and McßFS2), were cloned from German chamomile. Subcellular localization analysis showed that both McßFS1 and McßFS2 were localized in the cytoplasm and nucleus. Tissue-specific expression analysis revealed that McßFS1 and McßFS2 were expressed in all flower stages, with the highest levels observed during the tubular flower extension stage. Prokaryotic expression and enzyme activity results showed that McßFS1 and McßFS2 possess catalytic activity. Overexpression of McßFS1 and McßFS2 in the hairy roots of German chamomile led to the accumulation of EßF, demonstrating enzyme activity in vivo. The promoters of McßFS1 and McßFS2 were cloned and analyzed. After treating German chamomile with methyl jasmonate (MeJA) and methyl salicylate (MeSA), the transcription levels of McßFS1 and McßFS2 were found to be regulated by both hormones. In addition, feeding experiments showed that aphid infestation upregulated the expression levels of McßFS1 and McßFS2. Our study provides valuable insights into the biosynthesis of EßF, laying a foundation for further research into its metabolic pathways.

3.
Insects ; 15(10)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39452317

RESUMO

During the spring-summer seasons between 2019 and 2023, in the localities of Maquehue (La Araucanía Region) and Llifén (Los Ríos Region), we collected 262 virgin Proholopterus chilensis (1 female/2.3 males) specimens emerging from the live trunks of N. obliqua trees, an atypical sex ratio in Cerambycidae, suggesting high male competition for females. Virgin specimens of both sexes were individually placed in panel traps in the field, capturing only males (n = 184) over the field study seasons and only in traps baited with females. This fact preliminarily suggests the P. chilensis females emit possible "volatile or airborne" pheromones (eventually being a long-range sex pheromone), something unusual in Cerambycinae, the subfamily to which it currently belongs, although the taxonomic status of the species is under debate. In Llifén and Santiago (Metropolitan Region), behavioral observations were conducted, which allowed us to define the conditions necessary for male-female encounters that were replicated when carrying out volatile captures (Head Space Dynamic = HSD) and collections of compounds from terminalias excised from females. In field trials, virgin females less than ten days old were more attractive than older ones and attracted males during the night, i.e., between 23:00 and 5:00 AM, when the ambient temperature exceeded 11.6 °C. The aeration of females under the conditions described above and subsequent analysis of extracts by GC-MS allowed the identification of compounds absent in males and the control, including two oxygenated sesquiterpenes, a nitrogenous compound (C20), and a long-chain hydrocarbon (C26). From the terminalia extracts, hentriacontane, heptacosane, and heneicosyl, heptacosyl and docosyl acetates were identified by GC-MS, and their roles are unknown in the development of short-distance sexual behaviors, but they could serve to mark a trail leading the male towards the female in the final stage of approach for courtship/mating. Thus, we proposed the hypothesis that P. chilensis females emit both a long-range and a trail-pheromone, which, if confirmed, would be a rare case in this family. The specific identity of the compounds obtained by HSD, as well as the activities of these chemicals and those obtained from the terminalias, should be evaluated in future behavioral studies, as well as regarding their potential to attract males under field conditions. The current document is the first report on volatiles obtained from aerations and compounds extracted from female terminalia in P. chilensis.

4.
Insects ; 15(10)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39452312

RESUMO

The negative impact of pesticides on the environment and the potential of pest species to develop pesticide resistance make it necessary to explore new methods of pest control. Pheromones and other behavior-modifying semiochemicals are already important in integrated pest management (IPM). (E)-ß-farnesene (EBF) is a semiochemical that acts as an alarm pheromone in aphids. Upon perception of EBF, aphids stop feeding, move away, and sometimes even abandon the host plant. The aphids Myzus persicae and Aphis fabae are significant crop pests and vectors of many harmful phytopathogens affecting sugar beet (Beta vulgaris). Field trials were conducted at different locations in Germany to test whether dispensers containing a mixture of farnesene isomers (FIMs) including EBF were able to reduce the infestation of these species on sugar beet. Our results showed a reduction in aphid abundance in the FIM-treated patches in two out of three sites. Therefore, we hypothesize that FIM dispensers could prevent aphid infestation and could be used in combination with other IPM measures. However, more research is required to increase the effect and ensure the reliability of this method.

5.
J Agric Food Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365739

RESUMO

Conogethes punctiferalis, a polyphagous pest in Asia, infests various crops, causing severe economic losses. Its larvae feed inside plants, making management challenging, with conventional insecticides. This study examines sublethal bifenthrin effects on the reproductive capabilities of adult females. Findings show sublethal bifenthrin concentrations (LC1, LC10, LC20, and LC30) significantly reduce sex pheromone production and mating success in a dose-dependent manner. Furthermore, these sublethal exposures influence the expression of pheromone biosynthesis activating neuropeptide and key juvenile hormone signaling genes, including methoprene-tolerant and Krüppel-homologue 1. Enzyme activity assays and metabolite measurements indicated that sublethal bifenthrin exposure decreases trehalose and pyruvic acid levels, suppressing the enzyme activities required for sex pheromone biosynthesis. Additionally, bifenthrin exposure delays ovarian development, reduces ovary size, and decreases egg production and hatchability. These results suggest bifenthrin's potential in attract-and-kill strategies by disrupting essential pathways for pest control, offering insights for improved insecticide use and innovative pest management for C. punctiferalis.

6.
Pest Manag Sci ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360437

RESUMO

BACKGROUND: The chafer beetle, Holotrichia parallela, causes damage to numerous economically significant crops worldwide. Adult beetles exhibit aggregation behavior likely mediated by a male-produced pheromone. Advancements in biological research technology have facilitated the identification of insect aggregation pheromones and promoted their applications as bait for trapping and monitoring pests. Currently, only a few active components of aggregation pheromones from Holotrichia species have been identified. However, the specific components of aggregation pheromones produced by H. parallela remain unknown. RESULT: In this study, we initially observed from Y-tube olfactometer assays that both male and female H. parallela were significantly attracted to volatiles emitted by males, but not to those from females. We then collected hindgut crude extracts of male adults and carried out gas chromatography-mass spectrometry analysis to identify potential aggregation pheromone components. Pentadecyl acetate, cis-13-docosenol, and behenic acid were identified as male-specific compounds in comparison to female extracts, serving as components of the aggregation pheromone in H. parallela. We further evaluated their attractiveness to H. parallea in both laboratory and field experiments. In laboratory settings, pentadecyl acetate, cis-13-docosenol, and behenic acid evoked significant responses to both males and females at specific concentrations, as evidenced by both electroantennography tests and behavioral bioassays. Under field conditions, traps baited with these three compounds captured significantly more H. parallela adults compared to control traps. CONCLUSION: In this study, we found that pentadecyl acetate, cis-13-docosenol, and behenic acid are specifically present in male H. parallela, serving as aggregation pheromones. Both laboratory and field-trapping experiments suggest their potential as monitoring and controlling tools against H. parallela adults. © 2024 Society of Chemical Industry.

7.
Dev Dyn ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360498

RESUMO

BACKGROUND: Life cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue-specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. RESULTS: We found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. CONCLUSION: This study provides an example of how seasonal heterochronic shifts in tissue-specific ar gene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits.

8.
Insect Sci ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402830

RESUMO

In many animals, drastic changes are observed during sexual maturation characterized by the reproductive system development concomitantly to the sexual behavior ontogenesis. These modifications are under the control of internal and external factors such as food. Sexual maturation requires considerable energetic investment, and diet has been shown to affect reproductive activities in many taxonomic groups, especially in insects and vertebrates. By contrast, diet effects on sexual behavior development remain largely unexplored. To elucidate this aspect, we used the male moth Agrotis ipsilon which undergoes sexual maturation occurring between the third and the fifth day postemergence. During this period, males are sensitive to female sex pheromones and a stereotypical sexual behavior characterized by female-oriented flight takes place. In our study, we compared (1) sex pheromone detection by electroantennography recordings and (2) behavioral response in wind tunnel assays between males fed with different diets found in nature. Compared to standard sucrose diet, males fed with sucrose, fructose, and glucose supplemented with sodium (a mineral element necessary for the locomotor activity in several moths) did not respond better to female sex pheromones but clearly exhibited an earlier behavioral response. Thus, such a diet accelerates the development of sex pheromone-mediated oriented flight, probably by facilitating the central processing of sex pheromone information in male A. ipsilon moths. Our results provide new information on the influence of nutritional intake on the ontogenesis of male sexual behavior in animals.

9.
Pest Manag Sci ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390786

RESUMO

BACKGROUND: Potato (Solanum tuberosum L.) is a staple food crop globally, but its production is consistently threatened by diseases and arthropod pests like the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Phthorimaea operculella is often controlled by chemical applications. Sex pheromones have been used to detect, monitor, or control agricultural pests. Phthorimaea operculella sex pheromones mainly contain two chemical structures, 4E,7Z-trisadene-1-ol acetate and 4E,7Z,10Z-trisadene-1-ol acetate. However, the pheromone analogs are expected to act as mimics, synergists, antagonists, and inhibitors for pheromones and can be synthesized at a large scale. RESULT: In this study, a total of 11 sex pheromone analogs of P. operculella were designed and synthesized. Results showed that the antennae exhibited a concentration-dependent response to sex pheromones and their analogs. Different analogs and dosages had significant effects on the electrophysiological response of the antennae. In the field trials, when used alone, A6, B3 and B5 exhibited significant trapping effects in tobacco and potato fields. When used alternately with sex pheromone components, the analog B3 had significantly higher trapping effects in both tobacco and potato fields compared to the control, while combinations containing fluorinated analogs showed lower trapping effects. CONCLUSION: In summary, the use of sex pheromone analogs holds great promise for integration into pest management programs. Further investigation to fine-tune dosage and duration for optimal use is still needed. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.

10.
BMC Genomics ; 25(1): 976, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420273

RESUMO

Pheromone communication is a key mechanism by which the reproductive division of labor is maintained within insect communities. Understanding how pheromones evolved to regulate social behavior requires knowledge of the molecular regulation of their production. However, even in cases where pheromones were identified, our understanding of their biosynthesis and molecular regulation remains limited. Bumble bees provide a unique system to explore pheromone biosynthesis since workers produce ester sterility signals in their Dufour's gland that differ from gyne-specific esters and are not produced by queens. These esters are hypothesized to be produced in the exocrine gland where they are stored, and indeed queens, gynes and workers differ significantly in the expression of Dufour's gland genes coding to enzymes involved in the biosynthesis of esters. However, a previous transcriptome analysis revealed no gene expression differences in the Dufour's gland of workers despite differences in both ester production and ovarian activation, suggesting that ester production may be regulated lower down. Proteomics of the Dufour's gland of queens, gynes, and workers recovered over 2400 proteins and broadly matched the previous RNAseq data. However, more than 100 differentially expressed proteins were found between the worker groups, including key enzymes in fatty acid biosynthesis, indicating that the regulation of reproductive signal biosynthesis in workers is done post-transcription. Overall, our data provide evidence that pheromone biosynthesis in the Dufour's gland is caste specific, that gynes and workers are likely using different enzymes to make their respective wax esters, and that the regulation on pheromone production in queens, gynes and workers is likely done at different regulatory levels, with workers signals being subjected to regulation at the protein level.


Assuntos
Feromônios , Reprodução , Abelhas/genética , Abelhas/fisiologia , Abelhas/metabolismo , Animais , Feromônios/metabolismo , Reprodução/genética , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regulação da Expressão Gênica , Proteômica/métodos , Transcriptoma , Perfilação da Expressão Gênica
11.
Adv Sci (Weinh) ; : e2407353, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377305

RESUMO

Sexual dimorphism is a crucial aspect of mating and reproduction in many animals, yet the molecular mechanisms remain unclear. In Bactrocera dorsalis, sex pheromones trimethylpyrazine (TMP) and tetramethylpyrazine (TTMP) are specifically synthesized by Bacillus strains in the male rectum. In the female rectum, Bacillus strains are found, but TMP and TTMP are not, indicating sexually dimorphic differences in sex pheromone synthesis. Our anatomical observations and precursor measurements revealed significant differences in rectal structure and ammonium levels between sexes.  In vitro and in vivo experiments reveal that ammonium is vital for sex pheromone synthesis in rectal Bacillus strains. Comparative transcriptome analysis identified ammonium-producing genes (carboxypeptidase B and peptide transporter) in the protein digestion pathway that show much higher expression in the male rectum than in the female rectum. Knocking down the expression of either carboxypeptidase B (or inhibiting enzyme activity) or peptide transporter decreases rectal ammonium levels significantly, resulting in the failure of sex pheromone synthesis in the male rectum. This study provides insights into the presence of sexual dimorphism in internal organs and their functionalities in male-specific sex pheromone synthesis and has significant implications for understanding the molecular mechanisms underlying sex pheromone synthesis by symbionts in insects.

12.
J Agric Food Chem ; 72(44): 24724-24735, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39444352

RESUMO

Odorant metabolizing enzymes, considered as critical olfactory perireceptor actors, control the odor molecules reaching the olfactory epithelium by biotransforming them. As an odorant, the mammary pheromone, i.e., 2-methylbut-2-enal (2MB2), emitted in the milk of lactating female rabbits triggers typical nipple searching-grasping behavior through orocephalic movements in newborn rabbits but not in weaned rabbits. We previously showed that 2MB2 perception is significantly modified when its glutathione transferase-dependent olfactory metabolism is affected in newborns. Here, enzymatic assays of the recombinant enzymes GSTA1, M1, and P1 revealed the activity of these enzymes toward the mammary pheromone. Histological experiments revealed strong expression of the GSTA class restricted to the Bowman glands and of GSTP1 in the nuclei of sustentacular cells. Moreover, some modulations of GSTs have been demonstrated, including a significant increase in GSTP1 expression (2-fold in mRNA, p value < 0.001; protein, p value: 0.031) after 45 min of mammary pheromone exposure at 10-2 g/mL and an increase in GSTA expression in weaned rabbits compared with newborn rabbits (3-fold in mRNA, p value: 0.011; protein, p value: 0.001). Our results provide new insights into the activity, cellular expression, and modulation of the mammary pheromone GST-metabolizing enzymes and clues about their olfactory function.


Assuntos
Glutationa Transferase , Glândulas Mamárias Animais , Feromônios , Animais , Coelhos , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Feromônios/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/enzimologia , Lactação , Olfato , Mucosa Olfatória/metabolismo , Mucosa Olfatória/enzimologia , Aldeídos/metabolismo , Odorantes/análise
13.
Bioinspir Biomim ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39476489

RESUMO

This article presents a novel bioinspired technology for the cooperation and coordination of heterogeneous robot swarms in uncontrolled environments, utilizing an artificial pheromone composed of magnetized ferrofluids. Communication between different types of robots is achieved indirectly through stigmergy, where messages are inherently associated with specific locations. This approach is advantageous for swarm experimentation outside controlled laboratory spaces, where localization is typically managed through centralized camera systems (e.g., infrared, RGB). Applying pheromone principles has also proven beneficial for various swarm behaviors. We introduce a detection methodology for the artificial ferrofluid pheromone using low-cost magnetic sensors, along with signal processing and parameter characterization. Experiments involved a heterogeneous swarm consisting of two types of robots: one equipped with camera and image processing capabilities and the other with basic sensor technologies. Validation in multiple uncontrolled environments (with varying floor surfaces, wind, and light conditions) demonstrated successful cooperation among robots with differing technological complexities using the proposed technology.

14.
Data Brief ; 57: 110871, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39314893

RESUMO

Variation in sex pheromones is regarded as one of the causes of reproductive isolation and speciation. We recently identified 51 male- and female-specific compounds - many of which function as sex pheromones - in 99 drosophilid species [1]. Here, we report that despite many of these compounds being shared between species, their quantities differ significantly. For example, although 34 drosophilid species share the male-specific compound cis-vaccenyl acetate (cVA), which plays a critical role in regulating various social and sexual behaviors, the amount of cVA can differ by up to 600-fold between different species. Additionally, we found 7-tricosene, the cuticular hydrocarbon pheromone, present in 35 Drosophila species. Our findings indicate that 7-tricosene is equally present in both sexes of 14 species, more abundant in males of 14 species, and more abundant in females of 7 species. We provide raw data on the concentration of potential pheromone components in the 99 drosophilids, which can provide important insights for further research on the behavior and evolution of these species. Quantitative variations highlight species-specific patterns, suggesting an additional mechanism for reproductive isolation built on specific combinations of compounds at set concentrations.

15.
Insect Sci ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317948

RESUMO

The rise of biological invasions threatens biodiversity and food security, with the vespid family, including Vespa soror, being of particular concern. Our study focused on the alarm pheromone components of V. soror. By using gas chromatography-mass spectrometry (GC-MS) chemical analyses, electroantennograms, and field bioassays, we identified 5 compounds-2-pentanol, 3-methyl-1-butanol, 2-heptanol, 2-nonanol (2-N), and isopentyl acetate (IPA)-in hornet sting venom that elicited defensive behavior from hornets. IPA and 2-N also serve as alarm pheromone components in multiple honey bee species that are important prey for V. soror. This shared chemical signaling may allow cross-detection by each species on the other's alarm cues. While it should be advantageous for bees to detect V. soror alarm pheromone, the benefits to V. soror of using IPA and 2-N are unclear. V. soror may manipulate bee behavior, potentially distracting defenders, because they mark victim bee colonies by rubbing their abdomens, which contain their sting glands, at bee hive entrances. Our findings pose new evolutionary questions about the role of manipulation in the arms races.

16.
Pestic Biochem Physiol ; 204: 106073, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277386

RESUMO

Riptortus pedestris (Hemiptera: Alydidae) is a notable soybean pest, with diapause and non-diapause individuals showing different sensitivities to aggregation pheromones. This study aimed to investigate how R. pedestris detects aggregation pheromones through electroantennogram (EAG) and behavioral experiments, transcriptome sequencing and qRT-PCR, as well as competitive fluorescence-binding assay. Results indicated that diapausing females and males of R. pedestris exhibited a heightened EAG response and were more attracted to the aggregation pheromone components compared to their non-diapause counterparts. Transcriptome sequencing and qRT-PCR analyses revealed significantly higher expression of RpedOBP1 in the antennae of diapause females and males compared to non-diapausing R. pedestris. The competitive fluorescence-binding assay demonstrated that RpedOBP1 displayed the strongest binding affinity to E2HE2H, suggesting its crucial role in recognizing the aggregation pheromone. These findings have the potential to inform the development of integrated pest management strategies utilizing behavioral approaches for bean bug control.


Assuntos
Proteínas de Insetos , Feromônios , Animais , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Feminino , Masculino , Feromônios/metabolismo , Hemípteros/fisiologia , Hemípteros/genética , Hemípteros/metabolismo , Antenas de Artrópodes/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética
17.
Heliyon ; 10(17): e37111, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319138

RESUMO

Electrocardiograph (ECG) is one of the most critical physiological signals used for arrhythmia diagnosis. In recent years, ECG arrhythmia classification devices consisting of multi-module sensors, clustering algorithms and neural networks play an important role in monitoring and diagnosing cardiovascular diseases. However, the commonly used ECG arrhythmia classification methods are still facing some problems such as the complex model structure and long running time. To address the above problems, this paper proposes an ECG arrhythmia classification method based on the fast ant colony clustering algorithm with improved spatiotemporal feature perception ability (SFP-FACC), which uses LSTM to fit the cluster centers and avoids the time consumption of updating the cluster centers during the classification process. The spatiotemporal feature perception ability of this model with the dynamic time warping (DTW) algorithm is improved. The classification is achieved by applying the combination of Euclidean distance and DTW. The convergence speed of the model is improved by using dynamic pheromone volatility coefficient; and finally the optimal solution of the model is determined by using radix sort. Based on the MIT-BIH arrhythmia dataset, the overall accuracy of the proposed classification method in this paper achieves 99.04 %, and even the accuracy of certain types of classification achieves 100 %, and the running time is about 3.5 times faster than that of the basic models. The experiments show that the method proposed in this paper has certain advantages.

18.
Insect Biochem Mol Biol ; 173: 104180, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218166

RESUMO

Winged parthenogenetic aphids are mainly responsible for migration and dispersal. Aphid alarm pheromone (E)-ß-Farnesene (EBF) has dual effects on repelling and stimulating wing differentiation in aphids. Previous studies have shown that the odorant coreceptor SmisOrco is involved in the perception of EBF by S. miscanthi; however, its EBF-specific odorant receptor (OR) and the difference between winged and wingless aphids remain unclear. In this study, the Xenopus oocyte expression system and RNAi technology were used to detect the transmission of EBF signals, and it was found that the olfactory receptor SmisOR5 is an EBF-specific OR in S. miscanthi and is specifically highly expressed in the antennae of winged aphids. Furthermore, when OR5 was silenced with dsRNA, the repellent effect of EBF was weakened, and aphids showed more active aimless movements. Therefore, as a specific OR for EBF, the high expression level of SmisOR5 in winged aphids suggests a molecular basis for its high sensitivity to EBF. This study advances our understanding of the molecular mechanisms of aphid EBF perception and provides novel ideas for effective management and prevention of the migration of winged aphids.


Assuntos
Afídeos , Proteínas de Insetos , Receptores Odorantes , Animais , Afídeos/metabolismo , Afídeos/genética , Afídeos/fisiologia , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sesquiterpenos/metabolismo , Asas de Animais/metabolismo , Feromônios/metabolismo , Antenas de Artrópodes/metabolismo , Interferência de RNA
19.
Insects ; 15(9)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39336605

RESUMO

The rice leaf-roller Cnaphalocrocis medinalis is an important migratory pest of rice. We conducted a study to determine the physiological status of adults trapped by a sex pheromone and floral odor. In the immigrant group, the number of males trapped by the floral odor was greater than the number caught by sex pheromone trapping. The volume of testes was similar in the above two trapping methods but was smaller than in the sweep net method. The ovary developmental grade, mating rate, and number of matings of females caught in floral odor trap were higher than in those caught in the sweep net. In the local breeding group, the number of males trapped by sex pheromones was greater than the number trapped by the floral odor. The volume of testes was smaller in the floral odor trap compared to the pheromone trap group, with the largest in the sweep net group. The ovarian developmental grade, mating rate, and number of matings of females were significantly higher in the floral odor trap group than in the sweep net group. In the emigrant group, the adult olfactory response to the sex pheromone and floral odor was low. The volume of testes was larger in the sweep net group compared to the moths caught by floral odor trapping. The number of eggs laid by female immigrants trapped by the floral odor and sweep net was similar, while the number in the local breeding group was greater in moths caught with the sweep net in comparison with those caught by the floral odor trap. The difference in egg hatchability between the two trapping methods in both immigrants and local breedings was not significant.

20.
Insects ; 15(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39336627

RESUMO

The invasive mealybug Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) has rapidly spread in the Mediterranean basin since its detection in 2009 in the Valencia Community in eastern Spain. The use of sticky traps baited with its sex pheromone, (4,5,5-trimethyl-3-methylenecyclopent-1-en-1-yl)methyl acetate, has allowed to determine the geographical distribution of D. aberiae by means of the surveillance network described in the present work. The population monitoring of the pest over a five-year period (2019-2023) has revealed an increase from 31% to 70% of the affected citrus-growing area. The monitoring network has also allowed a better understanding of the pests' biological cycle throughout the year. The populations start growing from March to June and reach their maximum in July-August. During autumn, there is a gradual decline in the population. Although the highest annual populations were detected in 2022 and 2023, the greatest crop losses were recorded in 2020 and 2021, with mean values near 18%. Data suggest that the damage responsible for fruit deformation, and thus the economic losses, are related to the population levels in spring (April-May) rather than those in summer (July-August). The findings of this study can be valuable for future research and development of effective pest control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA