Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 200: 106622, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097034

RESUMO

The complexity and heterogeneity of PD necessitate advanced diagnostic and prognostic tools to elucidate its molecular mechanisms accurately. In this study, we addressed this challenge by conducting a pilot phospho-proteomic analysis of peripheral blood mononuclear cells (PBMCs) from idiopathic PD patients at varying disease stages to delineate the functional alterations occurring in these cells throughout the disease course and identify key molecules and pathways contributing to PD progression. By integrating clinical data with phospho-proteomic profiles across various PD stages, we identify potential stage-specific molecular signatures indicative of disease progression. This integrative approach allows for the discernment of distinct disease states and enhances our understanding of PD heterogeneity.

2.
Brain Behav Immun ; 122: 110-121, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128570

RESUMO

The olfactory bulb (OB), a major structure of the limbic system, has been understudied in human investigations of psychopathologies such as depression. To explore more directly the molecular features of the OB in depression, a global comparative proteome analysis was carried out with human post-mortem OB samples from 11 males having suffered from depression and 12 healthy controls. We identified 188 differentially abundant proteins (with adjusted p < 0.05) between depressed cases and controls. Gene ontology and gene enrichment analyses suggested that these proteins are involved in biological processes including the complement and coagulation cascades. Cell type enrichment analysis displayed a significant reduction in several canonical astrocytic proteins in OBs from depressed patients. Furthermore, using RNA-fluorescence in-situ hybridization, we observed a decrease in the percentage of ALDH1L1+ cells expressing canonical astrocytic markers including ALDOC, NFIA, GJA1 (connexin 43) and SLC1A3 (EAAT1). These results are consistent with previous reports of downregulated astrocytic marker expression in other brain regions in depressed patients. We also conducted a comparative phosphoproteomic analysis of OB samples and found a dysregulation of proteins involved in neuronal and astrocytic functions. To determine whether OB astrocytic abnormalities is specific to humans, we also performed proteomics on the OB of socially defeated male mice, a commonly used model of depression. Cell-type specific analysis revealed that in socially defeated animals, the most striking OB protein alterations were associated with oligodendrocyte-lineage cells rather than with astrocytes, highlighting an important species difference. Overall, this study further highlights cerebral astrocytic abnormalities as a consistent feature of depression in humans.

3.
Mol Cell Proteomics ; 23(8): 100802, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880245

RESUMO

The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.

4.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
5.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542311

RESUMO

Blast-induced neurotrauma (BINT) is a pressing concern for veterans and civilians exposed to explosive devices. Affected personnel may have increased risk for long-term cognitive decline and developing tauopathies including Alzheimer's disease-related disorders (ADRD) or frontal-temporal dementia (FTD). The goal of this study was to identify the effect of BINT on molecular networks and their modulation by mutant tau in transgenic (Tg) mice overexpressing the human tau P301L mutation (rTg4510) linked to FTD or non-carriers. The primary focus was on the phosphoproteome because of the prominent role of hyperphosphorylation in neurological disorders. Discrimination learning was assessed following injury in the subsequent 6 weeks, using the automated home-cage monitoring CognitionWall platform. At 40 days post injury, label-free phosphoproteomics was used to evaluate molecular networks in the frontal cortex of mice. Utilizing a weighted peptide co-expression network analysis (WpCNA) approach, we identified phosphopeptide networks tied to associative learning and mossy-fiber pathways and those which predicted learning outcomes. Phosphorylation levels in these networks were inversely related to learning and linked to synaptic dysfunction, cognitive decline, and dementia including Atp6v1a and Itsn1. Low-intensity blast (LIB) selectively increased pSer262tau in rTg4510, a site implicated in initiating tauopathy. Additionally, individual and group level analyses identified the Arhgap33 phosphopeptide as an indicator of BINT-induced cognitive impairment predominantly in rTg4510 mice. This study unveils novel interactions between ADRD genetic susceptibility, BINT, and cognitive decline, thus identifying dysregulated pathways as targets in potential precision-medicine focused therapeutics to alleviate the disease burden among those affected by BINT.


Assuntos
Demência Frontotemporal , Tauopatias , Camundongos , Humanos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Demência Frontotemporal/genética , Fosfopeptídeos , Tauopatias/metabolismo , Camundongos Transgênicos , Cognição , Modelos Animais de Doenças
6.
Cell Commun Signal ; 22(1): 115, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347536

RESUMO

Phosphorylation proteomics is the basis for the study of abnormally activated kinase signaling pathways in breast cancer, which facilitates the discovery of new oncogenic agents and drives the discovery of potential targets for early diagnosis and therapy of breast cancer. In this study, we have explored the aberrantly active kinases in breast cancer development and to elucidate the role of PRKCD_pY313 in triple negative breast cancer (TNBC) progression. We collected 47 pairs of breast cancer and paired far-cancer normal tissues and analyzed phosphorylated tyrosine (pY) peptides by Superbinder resin and further enriched the phosphorylated serine/threonine (pS/pT) peptides using TiO2 columns. We mapped the kinases activity of different subtypes of breast cancer and identified PRKCD_pY313 was upregulated in TNBC cell lines. Gain-of-function assay revealed that PRKCD_pY313 facilitated the proliferation, enhanced invasion, accelerated metastasis, increased the mitochondrial membrane potential and reduced ROS level of TNBC cell lines, while Y313F mutation and low PRKCD_pY313 reversed these effects. Furthermore, PRKCD_pY313 significantly upregulated Src_pY419 and p38_pT180/pY182, while low PRKCD_pY313 and PRKCD_Y313F had opposite effects. Dasatinib significantly inhibited the growth of PRKCD_pY313 overexpression cells, and this effect could be enhanced by Adezmapimod. In nude mice xenograft model, PRKCD_pY313 significantly promoted tumor progression, accompanied by increased levels of Ki-67, Bcl-xl and Vimentin, and decreased levels of Bad, cleaved caspase 3 and ZO1, which was opposite to the trend of Y313F group. Collectively, the heterogeneity of phosphorylation exists in different molecular subtypes of breast cancer. PRKCD_pY313 activates Src and accelerates TNBC progression, which could be inhibited by Dasatinib.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Dasatinibe/farmacologia , Camundongos Nus , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peptídeos/farmacologia , Proteína Quinase C-delta/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Quinases da Família src
7.
Microbiol Spectr ; 12(1): e0301023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991362

RESUMO

IMPORTANCE: Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Humanos , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/tratamento farmacológico , Pseudorraiva/patologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico
8.
Zool Res ; 45(1): 1-12, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114428

RESUMO

Changes in protein abundance and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Xizang (Tibet) Plateau (QTP). In total, 5 170 proteins and 5 695 phosphorylation sites in 1 938 proteins were quantified. Based on proteomic analysis, 674 differentially expressed proteins (438 up-regulated, 236 down-regulated) were screened in hibernating N. parkeri versus summer individuals. Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways, whereas lower expressed proteins were mainly involved in metabolic processes. A total of 4 251 modified sites (4 147 up-regulated, 104 down-regulated) belonging to 1 638 phosphoproteins (1 555 up-regulated, 83 down-regulated) were significantly changed in the liver. During hibernation, RPP regulated a diverse array of proteins involved in multiple functions, including metabolic enzymatic activity, ion transport, protein turnover, signal transduction, and alternative splicing. These changes contribute to enhancing protection, suppressing energy-consuming processes, and inducing metabolic depression. Moreover, the activities of phosphofructokinase, glutamate dehydrogenase, and ATPase were all significantly lower in winter compared to summer. In conclusion, our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.


Assuntos
Anuros , Proteômica , Humanos , Animais , Fosforilação , Tibet
9.
J Proteomics ; 289: 105010, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37797878

RESUMO

Drought is an important abiotic stress that constrains the quality and quantity of tea plants. The green leaf volatiles Z-3-hexenyl acetate (Z-3-HAC) have been reported to play an essential role in stress responses. However, the underlying mechanisms of drought tolerance in tea plants remain elusive. This study investigated the physiological, proteomic, and phosphoproteomic profiling of two tea plant varieties of Longjingchangye (LJCY) and Zhongcha 108 (ZC108) with contrasting drought tolerance characteristics under drought stress. Physiological data showed that spraying Z-3-HAC exhibited higher activities of superoxide dismutase (SOD) and catalase (CAT) in both LJCY and ZC108 but lower content of malondialdehyde (MDA) in LJCY under drought stress. The proteomic and phosphoproteomic analysis suggested that the drought tolerance mechanism of Z-3-HAC in LJCY and ZC108 was different. Proteomic analyses revealed that Z-3-HAC enhanced the drought tolerance of LJCY by fructose metabolism while enhancing the drought tolerance of ZC108 by promoting glucan biosynthesis and galactose metabolism. Furthermore, the differential abundance phosphoproteins (DAPPs) related to intracellular protein transmembrane transport and protein transmembrane transport were enriched in LJCY, and the regulation of response to osmotic stress and regulation of mRNA processing were enriched in ZC108. In addition, protein-phosphoprotein interactions (PPI) analyses suggested that energy metabolism and starch and sucrose metabolic processes might play critical roles in LJCY and ZC108, respectively. These results will help to understand the mechanisms by which Z-3-HAC enhances the drought resistance of tea plants at the protein level. SIGNIFICANT: Green leaf volatiles (GLVs) are important volatile organic compounds that play essential roles in plant defense against biotic and abiotic stresses. To understand the mechanisms of Z-3-HAC in improving the drought tolerance of tea plants, two contrasting drought tolerance varieties (LJCY and ZC108) were comparatively evaluated by proteomics and phosphoproteomics. This analysis evidenced changes in the abundance of proteins involved in energy metabolism and starch and sucrose metabolic processes in LJCY and ZC108, respectively. These proteins may elucidate new molecular aspects of the drought resistance mechanism of Z-3-HAC, providing a theoretical basis for drought resistance breeding of tea plants.


Assuntos
Secas , Proteômica , Proteômica/métodos , Melhoramento Vegetal , Estresse Fisiológico , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sacarose , Chá , Regulação da Expressão Gênica de Plantas
10.
Artigo em Inglês | MEDLINE | ID: mdl-37647835

RESUMO

In this study, we identified the differentially expressed proteins in gills stimulated by infected ciliates and analyzed the immune mechanisms of T. rubripes infected with the ciliate Cryptocaryon irritans. Through liquid chromatography analysis, a total of 144 proteins were identified with significant differences, of which 58 were upregulated and 86 were downregulated. Among phosphorylated proteins, we identified a total of 167 significantly different phosphorylated proteins, of which 44 were upregulated, 123 were downregulated, 60 were upregulated, and 208 were downregulated. We analyzed the data of proteomics and Phosphorylated proteome quantification protein omics to finally identify three phosphorylated proteins (RPS27, eNOS and CaM) and two phosphorylated protein kinases(CaMKII and MAPK1) as potential biomarkers for T. rubripes immune responses. We finally identified three phosphorylated proteins (RPS27, eNOS and CaM) and two phosphorylated protein kinases (CaMKII and MAPK1) as potential biomarkers of immune response of T. rubripes. Our research findings provide new insights into the immune mechanism of T. rubripes, which may serve as an effective indicator of C. irritans infection in T. rubripes.


Assuntos
Infecções por Cilióforos , Cilióforos , Animais , Takifugu/metabolismo , Proteômica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cilióforos/fisiologia , Biomarcadores/metabolismo
11.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569653

RESUMO

Geese have strong brooding abilities, which severely affect their egg-laying performance. Phosphorylation is widely involved in regulating reproductive activities, but its role in goose brooding behavior is unclear. In this study, we investigated differences in the phosphoprotein composition of ovarian tissue between laying and brooding geese. Brooding geese exhibited ovarian and follicular atrophy, as well as significant oxidative stress and granulosa cell apoptosis. We identified 578 highly phosphorylated proteins and 281 lowly phosphorylated proteins, and a KEGG pathway analysis showed that these differentially phosphorylated proteins were mainly involved in cell apoptosis, adhesion junctions, and other signaling pathways related to goose brooding behavior. The extracellular regulated protein kinase (ERK)-B-Cell Lymphoma 2(BCL2) signaling pathway was identified as playing an important role in regulating cell apoptosis. The phosphorylation levels of ERK proteins were significantly lower in brooding geese than in laying geese, and the expression of mitogen-activated protein kinase kinase (MEK) was downregulated. Overexpression of MEK led to a significant increase in ERK phosphorylation and BCL2 transcription in H2O2-induced granulosa cells (p < 0.05), partially rescuing cell death. Conversely, granulosa cells receiving MEK siRNA exhibited the opposite trend. In conclusion, geese experience significant oxidative stress and granulosa cell apoptosis during brooding, with downregulated MEK expression, decreased phosphorylation of ERK protein, and inhibited expression of BCL2.


Assuntos
Gansos , Quinases de Proteína Quinase Ativadas por Mitógeno , Feminino , Animais , Fosforilação , Gansos/genética , Peróxido de Hidrogênio/farmacologia , Células da Granulosa , Apoptose
12.
J Transl Med ; 21(1): 581, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649075

RESUMO

BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are seed cells that can be used for alternative treatment of myocardial damage. However, their immaturity limits their clinical application. Mitochondrial development accompanies cardiomyocyte maturation, and PINK1 plays an important role in the regulation of mitochondrial quality. However, the role and mechanism of PINK1 in cardiomyocyte development remain unclear. METHODS: We used proteomic and phosphoproteomic to identify protein and phosphosite changes in hiPSC-CMs deficient in PINK1. Bioinformatics analysis was performed to identify the potential biological functions and regulatory mechanisms of these differentially expressed proteins and validate potential downstream mechanisms. RESULTS: Deletion of PINK1 resulted in mitochondrial structural breakdown and dysfunction, accompanied by disordered myofibrils arrangement. hiPSC-CMs deficient in PINK1 exhibited significantly decreased expression of mitochondrial ATP synthesis proteins and inhibition of the oxidative phosphorylation pathway. In contrast, the expression of proteins related to cardiac pathology was increased, and the phosphoproteins involved in cytoskeleton construction were significantly altered. Mechanistically, PINK1 deletion damaged the mitochondrial cristae of hiPSC-CMs and reduced the efficiency of mitochondrial respiratory chain assembly. CONCLUSION: The significantly differentially expressed proteins identified in this study highlight the important role of PINK1 in regulating mitochondrial quality in hiPSC-CMs. PINK1-mediated mitochondrial respiratory chain assembly is the basis for mitochondrial function. Whereas the cytoskeleton may be adaptively altered in response to mitochondrial dysfunction caused by PINK1 deletion, inadequate energy supply hinders myocardial development. These findings facilitate the exploration of the mechanism of PINK1 in cardiomyocyte development and guide efforts to promote the maturation of hiPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Proteômica , Mitocôndrias , Proteínas Mitocondriais , Proteínas Quinases/genética
13.
Int Immunol ; 35(10): 483-495, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37465957

RESUMO

Systemic lupus erythematosus (SLE) involves disorders of innate and adaptive immune pathways. Tax1-binding protein 1 (TAX1BP1) modulates the production of antibodies in B cells and the T-cell cycle by regulating the NF-κB signaling pathway. However, the potential association of TAX1BP1 with SLE and its role in monocytes/macrophages have not been fully elucidated. In this study, we utilized whole-exome sequencing (WES) in combination with Sanger sequencing and identified 16 gene mutations, including in TAX1BP1, in an SLE family. TAX1BP1 protein expression with western blotting detection was reduced in SLE patients and correlated with disease activity negatively. Furthermore, RNA sequencing and 4D Label-Free Phosphoproteomic analysis were employed to characterize the transcriptome and phosphoproteome profiles in THP-1 and THP-1-differentiated M1 macrophages with TAX1BP1 knockdown. Silencing of TAX1BP1 in THP-1 and THP-1-differentiated M1 macrophages led to an increase in cluster of differentiation 80 (CD80) expression and differential changes in CD14 and CD16 expression, as assessed by flow cytometry. Additionally, western blot analysis showed that knockdown of TAX1BP1 led to a reduction in TRAF6 and p-p65 in THP-1-differentiated macrophages, with or without lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α stimulation. Taken together, our findings suggest that TAX1BP1 participates in SLE activity by regulating antigen presentation in monocytes and inflammatory responses in M1 macrophages.


Assuntos
Lúpus Eritematoso Sistêmico , Monócitos , Humanos , Monócitos/metabolismo , Macrófagos , NF-kappa B/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
Front Plant Sci ; 14: 1212510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521912

RESUMO

Rice blast, caused by Magnaporthe oryzae is one of the most destructive diseases of rice (Oryza sativa L.) in most rice-cultivated areas worldwide. Mowanggu (MWG) is a traditional landrace rice variety in Yunnan with broad-spectrum and durable blast resistance against rice blast fungus. However, the underlying disease-resistance mechanisms remain unknown. An integrative transcriptomic, proteomic, and phosphoproteomic analysis of MWG was performed after inoculation with M. oryzae in this study. The transcriptomic and proteomic results revealed that MWG was moderately correlated at the transcriptional and protein levels. Differentially expressed genes and proteins were up-regulated and significantly enriched in protein phosphorylation, peroxisome, plant-pathogen interactions, phenylpropanoid metabolism and phenylalanine biosynthesis pathways. The phosphoproteomic profile and phosphorylated-protein-interaction network revealed that the altered phosphoproteins were primarily associated with reactive oxygen species (ROS), glycolysis, MAPK signaling pathways, and amino acid biosynthesis. In addition, a series of physiological and biochemical parameters, including ROS, soluble sugars, soluble protein and callus accumulation and defense-related enzyme activities, were used to validate the possible blast resistance mechanisms of MWG. The integrative transcriptomic, proteomic, and phosphoproteomic analysis revealed the different expression patterns at the molecular level of the durably resistant rice cultivar MWG after inoculation with M. oryzae, which provides insight into the molecular mechanisms of rice blast resistance.

15.
Neural Regen Res ; 18(12): 2711-2719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449635

RESUMO

The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment. This cognitive impairment is thought to result specifically from damage to the hippocampus. In this study, we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test. Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury. Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus, as well as in the density of mature dendritic spines. To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage, we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury. The differentially expressed proteins were mainly enriched in inflammation, immunity, and coagulation, suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury. In contrast, differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure, which is more consistent with neurodegeneration. We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury , and western blotting showed that, while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury, its phosphorylation level was significantly increased, which is consistent with the omics results. Administration of GRP78608, an N-methyl-D-aspartate receptor 1 antagonist, to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment. In conclusion, our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.

16.
Food Chem ; 427: 136737, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390736

RESUMO

This study aimed to investigate the effects of muscle-specific oxidative stress on phosphorylation and its relationship with mitochondrial dysfunction, muscle oxidation, and apoptosis of porcine PM (psoas major) and LL (longissimus lumborum) during the first 24 h postmortem. The global phosphorylation level decreased and the mitochondrial dysfunction, oxidation level, and apoptosis increased significantly at 12 h postmortem compared with 2 h postmortem, suggesting that lower phosphorylation level was related to more mitochondrial dysfunction and apoptosis during the early postmortem, regardless of muscle type. PM exhibited a higher global phosphorylation level but showed greater mitochondrial dysfunction, oxidation level, and apoptosis than LL, regardless of aging time. The increased mitochondrial dysfunction and oxidative stress accelerated apoptosis, but their relationship with phosphorylation was different in various muscle types at different aging times. These findings provide insight regarding the roles of coordinated regulation of phosphorylation and apoptosis in development of quality of different muscles.


Assuntos
Músculo Esquelético , Carne Vermelha , Animais , Suínos , Músculo Esquelético/metabolismo , Fosforilação , Carne Vermelha/análise , Apoptose , Estresse Oxidativo , Mitocôndrias/genética , Mitocôndrias/metabolismo
17.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298580

RESUMO

Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by elevated pulmonary vascular resistance and increased pressure in the distal pulmonary arteries. Systematic analysis of the proteins and pathways involved in the progression of PAH is crucial for understanding the underlying molecular mechanism. In this study, we performed tandem mass tags (TMT)-based relative quantitative proteomic profiling of lung tissues from rats treated with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 6759 proteins were quantified, among which 2660 proteins exhibited significant changes (p-value < 0.05, fold change < 0.83 or >1.2). Notably, these changes included several known PAH-related proteins, such as Retnla (resistin-like alpha) and arginase-1. Furthermore, the expression of potential PAH-related proteins, including Aurora kinase B and Cyclin-A2, was verified via Western blot analysis. In addition, we performed quantitative phosphoproteomic analysis on the lungs from MCT-induced PAH rats and identified 1412 upregulated phosphopeptides and 390 downregulated phosphopeptides. Pathway enrichment analysis revealed significant involvement of pathways such as complement and coagulation cascades and the signaling pathway of vascular smooth muscle contraction. Overall, this comprehensive analysis of proteins and phosphoproteins involved in the development and progression of PAH in lung tissues provides valuable insights for the development of potential diagnostic and treatment targets for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Pulmonar/metabolismo , Fosfopeptídeos , Proteômica , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar , Modelos Animais de Doenças
18.
Anim Nutr ; 13: 249-260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37168449

RESUMO

Dietary threonine (Thr) deficiency enhances triglyceride (TG) deposition in the liver of Pekin ducks, which injures hepatic function and impairs growth performance. However, the underlying molecular mechanisms remain unclear. In the present study, we investigated the effects of dietary Thr deficiency on the expressions of proteins and phosphoproteins in liver of Pekin ducks, to identify the underlying molecular changes. A total of 300 one-day-old ducklings were divided into 3 groups with 10 replicates of 10 birds. All ducks were fed corn-wheat-peanut meal diets containing 0.46%, 0.71%, and 0.96% Thr, respectively, from 1 to 21 days of age. Growth performance, serum parameters, hepatic TG content, and expression of genes involved in lipid metabolism of Pekin ducks were determined. A Thr deficiency group (Thr-D, 0.46% Thr) and a Thr sufficiency group (Thr-S, 0.71% Thr) were selected for subsequent proteomic and phosphoproteomic analysis. The results showed that Thr-D reduced the growth performance (P < 0.001), and increased the plasma concentrations of cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and hepatic TG (P < 0.05). Thr-D increased gene expression related to fatty acid and TG synthesis (P < 0.05). A total of 176 proteins and 259 phosphosites (containing 198 phosphoproteins) were observed to be differentially expressed as a result of Thr-D. The upregulated proteins were enriched in the pathway related to amino acid metabolism, peroxisome. The downregulated proteins were enriched in linolenic and arachidonic acid metabolism, and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. The upregulated phosphoproteins were enriched in the pathways related to fatty acid biosynthesis, fructose and mannose metabolism, and glycolysis/gluconeogenesis. Thr-D reduced the phosphorylation of STAT1 at S729 and STAT3 at S728, and expression of STAT5B. In contrast, Thr-D increased non-receptor tyrosine-protein kinase (TYK2) expression and STAT1 phosphorylation at S649. Taken together, dietary Thr-D increased hepatic TG accumulation by upregulating the expression of genes and proteins, and phosphoproteins related to fatty acid and triglyceride synthesis. Furthermore, these processes might be regulated by the JAK-STAT signaling pathway, especially the phosphorylation of STAT1 and STAT3.

19.
Cell Rep ; 42(6): 112539, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243593

RESUMO

c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.


Assuntos
Proteínas Tirosina Quinases , Secretoma , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Fosfotransferases , Fosforilação , Domínios de Homologia de src , Comunicação Celular , Quinases da Família src
20.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175411

RESUMO

Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.


Assuntos
Oryza , Oryza/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Aclimatação , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA