Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2409564, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374000

RESUMO

Perovskite nanocrystals (PNCs) are promising luminescent materials for electronic color displays due to their high luminescence efficiency, widely-tunable emission wavelengths, and narrow emission linewidth. Their application in emerging display technologies necessitates precise micron-scale patterning while maintaining good optical performance. Although photolithography is a well-established micro-patterning technique in the industry, conventional processes are incompatible with PNCs as the use of polar solvents can damage the ionic PNCs, causing severe luminescence quenching. Here, we report the rational design and synthesis of a new bidentate photo-crosslinkable ligand for the direct photo-patterning of PNCs. Each ligand contains two photosensitive acrylate groups and two carboxylate groups, and is introduced to the PNCs via an entropy-driven ligand exchange process. In a close-packed thin film, the acrylate ligands photo-polymerize and crosslink under ultraviolet light, rendering the PNCs insoluble in developing solvents. A high-density crosslinked PNC film with an optical density of 1.1 is attained at 1.4 µm thickness, surpassing industry requirements on the absorption coefficient. Micron-scale patterning is further demonstrated using direct laser writing, producing well-defined 20 µm features. This study thus offers an effective and versatile approach for micro-patterning PNCs, and may also be broadly applicable to other nanomaterial systems.

2.
Adv Mater ; : e2407305, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344857

RESUMO

Photo-patterning of polymer semiconductors using photo-crosslinkers has shown potential for organic circuit fabrication via solution processing techniques. However, the performance of patterning, including resolution (R), UV light exposure dose, sensitivity (S), and contrast (γ), remains unsatisfactory. In this study, a novel conjugated polymer based photo-crosslinker (PN3, Figure 1a) is reported for the first time, which entails phenyl-substituted azide groups in its side chains. Due to the potential π-π interactions between the conjugated backbone of PN3 and those of polymer semiconductors, PN3 exhibits superior miscibility with polymer semiconductors compared to the commonly used small molecule photo-crosslinker 4Bx (Figure 1a). Consequently, photo-patterning of polymer semiconductors with PN3 demonstrates improved performance with much lower UV light exposure dose, higher S and higher γ compared to 4Bx. By utilizing electron beam lithography, patterned arrays of polymer semiconductors with resolutions down to 500 nm and clearer edges are successfully fabricated using PN3. Furthermore, patterned arrays of PDPP4T, the p-type semiconductor (Figure 1b), after being doped, can function as source-drain electrodes for fabricating field-effect transistors (FETs) with comparable charge mobility and significantly lower sub-threshold swing value compared to those with gold electrodes.

3.
Proc Natl Acad Sci U S A ; 121(36): e2405168121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39196620

RESUMO

Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation. Here, we utilize preimposed programmable photopatterning in nematics to control the kinetics of director solitons. This enables both unidirectional and bidirectional generation at specific locations and times, confinement within micron-scaled patterns of diverse shapes, and directed propagation along predefined trajectories. A focused dynamical model provides insight into the origins of these solitons and aligns closely with experimental observations, underscoring the pivotal role of anchoring conditions in soliton manipulation. Our findings pave the way for diverse fundamental research avenues and promising applications, including microcargo transportation and optical information processing.

4.
Adv Mater ; 36(39): e2408324, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097949

RESUMO

Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs.

5.
ACS Nano ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988308

RESUMO

Metal-organic frameworks (MOFs) are a class of porous materials constructed from organic linkers and inorganic building blocks. Coordinative competition labilizes some MOFs under harsh chemical conditions because of their weak bonding. However, instability is not always a negative property of a material. In this study, we demonstrated the use of the acidic lability of MOFs for direct optical patterning. The controllable acid release from the photoacid generator at the exposed area causes bond cleavage between the linkers and metal ions/clusters, leading to solubility changes and pattern formation after development. This process avoids redundant steps and possible contamination in traditional photolithography, while maintaining the original properties of patterned MOFs. The preserved porosity and crystallinity promoted the development of MOFs for gas sensors and solid displays.

6.
ACS Appl Mater Interfaces ; 16(31): 41534-41541, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39045824

RESUMO

Macroporous hydrogels have attracted much attention in both industry and academia, where the morphological characteristics of pores are essential. Despite significant improvements on regulating porous structures, the independent configuration and reprogramming of porosity and pore size still remain challenging owing to the lack of a chemical design to decouple the mechanism for adjusting each characteristic. Here, we report a strategy to adaptively control porous features relying on an orthogonal dynamic network. Disulfide bonds are employed to relax polymer chains during freezing via UV irradiation, thus, generating pores in hydrogels. On such a basis, the porosity is continuously switched from 0 to 75% by controlling network relaxation ratios. Subsequently, the pore size is further reversibly manipulated through the association or dissociation of dynamic metallic coordination. As a result, the porosity and pore size achieved independent configurations. Meanwhile, the dynamic nature of the network makes it possible to reprogram the porous character of a prepared hydrogel. Beyond these, the photopatterning of pores represents the capability to regulate the third feature. Our strategy provides an effective way to arbitrarily manipulate porous morphologies, which can inspire the design of future functional porous materials.

7.
Macromol Rapid Commun ; 45(17): e2400200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875712

RESUMO

Thermosets having low dielectric constant (Dk < 3) and low dielectric dissipation factor (Df < 0.003), high glass transition temperature (Tg > 150 °C), and good adhesion to copper are desirable for the low loss layers of the copper clad laminates (CCL) in next generation printed circuit boards. Three different difunctional diazirines are evaluated for both thermal and photochemical crosslinking of a high Tg vinyl-addition polynorbornene resin: poly(5-hexyl-1-norbornene) (poly(HNB)). The substrate polymer, crosslinked by the carbenes generated from the activated diazirines, forms thermosets with Dk < 2.3 and Df < 0.001 at 10 GHz depending on the identity of the diazirine and the loading. The Dk and Df values for one composition are stable for 1600 h at 125 °C in air and for 1400 h at 85 °C and 85% relative humidity, suggesting good long-term reliability of this thermoset. Adhesion of poly(HNB) to copper can be enhanced by priming the copper surface with a diazirine prior to high temperature lamination; peel strength values of greater than 7.5 N cm-1 are achieved. Negative-tone photopatterning of poly(HNB) with diazirines upon exposure to 365 nm light is demonstrated.


Assuntos
Diazometano , Diazometano/química , Cobre/química , Temperatura , Polímeros/química , Polímeros/síntese química , Norbornanos/química , Estrutura Molecular , Compostos de Vinila/química , Reagentes de Ligações Cruzadas/química , Plásticos/química
8.
Adv Sci (Weinh) ; 11(25): e2402191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38582514

RESUMO

Michael addition between thiol- and maleimide-functionalized molecules is a long-standing approach used for bioconjugation, hydrogel crosslinking, and the functionalization of other advanced materials. While the simplicity of this chemistry enables facile synthesis of hydrogels, network degradation is also desirable in many instances. Here, the susceptibility of thiol-maleimide bonds to radical-mediated degradation is reported. Irreversible degradation in crosslinked materials is demonstrated using photoinitiated and chemically initiated radicals in hydrogels and linear polymers. The extent of degradation is shown to be dependent on initiator concentration. Using a model linear polymer system, the radical-mediated mechanism of degradation is elucidated, in which the thiosuccinimide crosslink is converted to a succinimide and a new thioether formed with an initiator fragment. Using laser stereolithography, high-fidelity spatiotemporal control over degradation in crosslinked gels is demonstrated. Ultimately, this work establishes a platform for controllable, radical-mediated degradation in thiol-maleimide hydrogels, further expanding their versatility as functional materials.

9.
Gels ; 10(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534582

RESUMO

Hydrogels are a class of soft biomaterials and the material of choice for a myriad of biomedical applications due to their biocompatibility and highly tunable mechanical and biochemical properties. Specifically, light-mediated thiol-norbornene click reactions between norbornene-modified macromers and di-thiolated crosslinkers can be used to form base hydrogels amenable to spatial biochemical modifications via subsequent light reactions between pendant norbornenes in the hydrogel network and thiolated peptides. Macromers derived from natural sources (e.g., hyaluronic acid, gelatin, alginate) can cause off-target cell signaling, and this has motivated the use of synthetic macromers such as poly(ethylene glycol) (PEG). In this study, commercially available 8-arm norbornene-modified PEG (PEG-Nor) macromers were reacted with di-thiolated crosslinkers (dithiothreitol, DTT) to form synthetic hydrogels. By varying the PEG-Nor weight percent or DTT concentration, hydrogels with a stiffness range of 3.3 kPa-31.3 kPa were formed. Pendant norbornene groups in these hydrogels were used for secondary reactions to either increase hydrogel stiffness (by reacting with DTT) or to tether mono-thiolated peptides to the hydrogel network. Peptide functionalization has no effect on bulk hydrogel mechanics, and this confirms that mechanical and biochemical signals can be independently controlled. Using photomasks, thiolated peptides can also be photopatterned onto base hydrogels, and mesenchymal stem cells (MSCs) attach and spread on RGD-functionalized PEG-Nor hydrogels. MSCs encapsulated in PEG-Nor hydrogels are also highly viable, demonstrating the ability of this platform to form biocompatible hydrogels for 2D and 3D cell culture with user-defined mechanical and biochemical properties.

10.
Adv Mater ; 36(24): e2309256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479377

RESUMO

Polymer semiconductors hold tremendous potential for applications in flexible devices, which is however hindered by the fact that they are usually processed by halogenated solvents rather than environmentally more friendly solvents. An effective strategy to boost the solubility of high-performance polymer semiconductors in nonhalogenated solvents such as tetrahydrofuran (THF) by appending hydroxyl groups in the side chains is herein presented. The results show that hydroxyl groups, which can be easily incorporated into the side chains, can significantly improve the solubility of typical p- and n-types as well as ambipolar polymer semiconductors in THF. Meanwhile, the thin films of these polymer semiconductors from the respective THF solutions show high charge mobilities. With THF as the processing and developing solvents these polymer semiconductors with hydroxyl groups in the side chains can be well photopatterned in the presence of the photo-crosslinker, and the charge mobilities of the patterned thin films are mostly maintained by comparing with those of the respective pristine thin films. Notably, THF is successfully utilized as the processing and developing solvent to achieve high-density photopatterning with ≈82 000 device arrays cm-2 for polymer semiconductors in which hydroxyl groups are appended in the side chains.

11.
ACS Appl Bio Mater ; 7(2): 853-862, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38270977

RESUMO

In biosensor development, silk fibroin is advantageous for providing transparent, flexible, chemically/mechanically stable, biocompatible, and sustainable substrates, where the biorecognition element remains functional for long time periods. These properties are employed here in the production of point-of-care biosensors for resource-limited regions, which are able to display glucose levels without the need for external instrumentation. These biosensors are produced by photopatterning silk films doped with the enzymes glucose oxidase and peroxidase and photoelectrochromic molecules from the dithienylethene family acting as colorimetric mediators of the enzymatic reaction. The photopatterning results from the photoisomerization of dithienylethene molecules in the silk film from its initial uncolored opened form to its pink closed one. The photoisomerization is dose-dependent, and colored patterns with increasing color intensities are obtained by increasing either the irradiation time or the light intensity. In the presence of glucose, the enzymatic cascade reaction is activated, and peroxidase selectively returns closed dithienylethene molecules to their initial uncolored state. Color disappearance in the silk film is proportional to glucose concentration and used to distinguish between hypoglycemic (below 4 mM), normoglycemic (4-6 mM), and hyperglycemic levels (above 6 mM) by visual inspection. After the measurement, the biosensor can be regenerated by irradiation with UV light, enabling up to five measurement cycles. The coupling of peroxidase activity to other oxidoreductases opens the possibility to produce long-life reusable smart biosensors for other analytes such as lactate, cholesterol, or ethanol.


Assuntos
Técnicas Biossensoriais , Seda , Seda/química , Colorimetria/métodos , Peroxidases , Técnicas Biossensoriais/métodos , Peroxidase , Glucose
12.
Macromol Rapid Commun ; 45(4): e2300552, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962095

RESUMO

A new method for synthesizing cross-linked 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) using a radical-based thiol-ene click reaction is developed. This method is simple, efficient, and cost-effective, and it produces polymers with unique optical, electrochemical, and surface morphology properties. Significant blue shifts in absorption and photoinduced electron transfer in emissions are observed in the cross-linked BODIPY thin films. Cross-linking also leads to the restriction of conjugation, which results in the breakage of the terminal vinyl group, an increase in the oxidation potential, and a slight upshift in the HOMO position. As a result, the electrochemical band gap is widened from 1.88 to 1.94 eV for polymer bearing N,N-dimethylamino-BODIPY and from 1.97 to 2.02 eV for polymer bearing N,N-diphenylamino-BODIPY moieties. Monomer thin films form planar surfaces due to crystallinity, while amorphous cross-linked BODIPY polymers form more rough surfaces. Additionally, photopatterning on the film surface is successfully performed using different patterned masks. This new method for synthesizing cross-linked BODIPYs has the potential to be used in a variety of applications, including organic electronics, bioimaging, and photocatalysis.


Assuntos
Compostos de Boro , Elétrons , Oxirredução , Transporte de Elétrons , Compostos de Boro/química , Polímeros
13.
Angew Chem Int Ed Engl ; 63(4): e202315061, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37966368

RESUMO

The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.

14.
Small ; 20(16): e2308103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018335

RESUMO

Bright afterglow room-temperature phosphorescence (RTP) soon after ceasing excitation is a promising technique for greatly increasing anti-counterfeiting capabilities. The development of a process for rapid high-resolution afterglow patterning of crystalline materials can improve both high-speed fabrication of anti-counterfeiting afterglow media and stable afterglow readout compared with those achieved with amorphous materials. Here, the high-resolution afterglow patterning of crystalline materials via cooperative organic vapo- and photo-stimulation is reported. A single crystal of (S)-(-)-2,2'-bis(diphenylphosphino)-5,5',6,6',7,7'8,8'-octahydro-1,1'-binaphthyl [(S)-H8-BINAP] doped with (S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP] shows green afterglow RTP. Crystals of (S)-BINAP-doped (S)-H8-BINAP changed to an amorphous state with no afterglow capability on weak continuous photoirradiation under dichloromethane (DCM) vapor. Photoirradiation induced oxidation of the (S)-H8-BINAP host molecule in the crystal. The oxidized (S)-H8-BINAP forms on the crystal surface strongly interacted with DCM molecules, which induces melting of the (S)-BINAP-doped (S)-H8-BINAP crystal and trigger formation of an amorphous state without an afterglow capability. High-resolution afterglow patterning of the crystalline film is rapidly achieved by using cooperative organic vapo- and photo-stimulation. In addition to the benefit of rapid afterglow patterning, the formed afterglow images of the crystalline film can be repeatedly read out under ambient conditions without DCM vapor.

15.
Adv Sci (Weinh) ; 10(35): e2206190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946608

RESUMO

Epithelial cells are in continuous dynamic biochemical and physical interaction with their extracellular environment. Ultimately, this interplay guides fundamental physiological processes. In these interactions, cells generate fast local and global transients of Ca2+ ions, which act as key intracellular messengers. However, the mechanical triggers initiating these responses have remained unclear. Light-responsive materials offer intriguing possibilities to dynamically modify the physical niche of the cells. Here, a light-sensitive azobenzene-based glassy material that can be micropatterned with visible light to undergo spatiotemporally controlled deformations is used. Real-time monitoring of consequential rapid intracellular Ca2+ signals reveals that the mechanosensitive cation channel Piezo1 has a major role in generating the Ca2+ transients after nanoscale mechanical deformation of the cell culture substrate. Furthermore, the studies indicate that Piezo1 preferably responds to shear deformation at the cell-material interphase rather than to absolute topographical change of the substrate. Finally, the experimentally verified computational model suggests that Na+ entering alongside Ca2+ through the mechanosensitive cation channels modulates the duration of Ca2+ transients, influencing differently the directly stimulated cells and their neighbors. This highlights the complexity of mechanical signaling in multicellular systems. These results give mechanistic understanding on how cells respond to rapid nanoscale material dynamics and deformations.


Assuntos
Células Epiteliais , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Células Cultivadas , Cátions
16.
Adv Mater Technol ; 8(15)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37811162

RESUMO

Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 µm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 µm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.

17.
ACS Appl Mater Interfaces ; 15(41): 48736-48743, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812680

RESUMO

Flexible materials with ionic conductivity and stretchability are indispensable in emerging fields of flexible electronic devices as sensing and protecting layers. However, designing robust sensing materials with skin-like compliance remains challenging because of the contradiction between softness and strength. Herein, inspired by the modulus-contrast hierarchical structure of biological skin, we fabricated a biomimetic hydrogel with strain-stiffening capability by embedding the stiff array of poly(acrylic acid) (PAAc) in the soft polyacrylamide (PAAm) hydrogel. The stress distribution in both stiff and soft domains can be regulated by changing the arrangement of patterns, thus improving the mechanical properties of the patterned hydrogel. As expected, the resulting patterned hydrogel showed its nonlinear mechanical properties, which afforded a high strength of 1.20 MPa while maintaining a low initial Young's modulus of 31.0 kPa. Moreover, the array of PAAc enables the patterned hydrogel to possess protonic conductivity in the absence of additional ionic salts, thus endowing the patterned hydrogel with the ability to serve as a strain sensor for monitoring human motion.


Assuntos
Hidrogéis , Pele , Humanos , Hidrogéis/química , Movimento (Física) , Módulo de Elasticidade , Íons , Condutividade Elétrica
18.
Biomater Adv ; 154: 213629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742557

RESUMO

Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.18 mC cm-2 by implementing iridium oxide-modified nanoporous Au (IrOx/NPG) structures. We performed simultaneous in vivo micro-stimulations of the Schaffer collateral fibres and recorded the evoked field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum layer of the hippocampal Cornu Ammonis 1 region using a single probe. Inducing the fEPSP at very low charge per pulse settings (3.2-3.6 nC/pulse) indicates the efficient charge injection capability of the IrOx/NPG electrode, thereby enabling safe, prolonged, and thrifty micro-stimulations. Furthermore, the single probe-induced and recorded long-term potentiation persisted for periods longer than 60 min following theta-burst stimulation. The materials used in this study are all biocompatible and chemically robust. The fabricated neural probes can be applied in chronic clinical trials in vivo.


Assuntos
Polímeros de Fluorcarboneto , Hipocampo , Hipocampo/fisiologia , Região CA1 Hipocampal , Eletrodos
19.
Adv Mater ; 35(46): e2303453, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611189

RESUMO

Strategies that mimic the spatial complexity of natural tissues can provide cellular scaffolds to probe fundamental questions in cell biology and offer new materials for regenerative medicine. Here, the authors demonstrate a light-guided patterning platform that uses natural engineered extracellular matrix (ECM) proteins as a substrate to program cellular behaviors. A photocaged diene which undergoes Diels-Alder-based click chemistry upon uncaging with 365 nm light is utilized. By interfacing with commercially available maleimide dienophiles, patterning of common ECM proteins (collagen, fibronectin Matrigel, laminin) with readily purchased functional small molecules and growth factors is achieved. Finally, the use of this platform to spatially control ERK activity and migration in mammalian cells is highlighted, demonstrating programmable cell behavior through patterned chemical modification of natural ECM.


Assuntos
Matriz Extracelular , Medicina Regenerativa
20.
Adv Mater ; 35(36): e2301086, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37221642

RESUMO

Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially-encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol-yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter-scale areas using mask-free digital photolithography. Sequence-specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein-DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially-encoded cellular signaling environments.


Assuntos
Fotoquímica , DNA/química , Transdução de Sinais , Hidrogéis/química , Fotoquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA