Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
J Anim Sci ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367522

RESUMO

The objective of this study aimed to investigate the effectiveness of phytase alone and in combination with multi-carbohydrase in available phosphorus (AP) and energy-deficient diets on growth performance, nutrient digestibility, tibia traits, and carcass quality of broilers. A total of 288 one-day-old Ross 308 broiler chicks were randomly assigned to one of six dietary treatments in a completely randomized design, with each treatment having 6 replicates and 8 birds per cage. The treatments were as follows: i) positive control with adequate nutrition (PC); ii) 0.20% AP-deficient diet without phytase (NC-1); iii) 0.25% AP-deficient diet without phytase (NC-2); iv) NC-1 diet plus 500 FTU/kg phytase (NCP-1); v) NC-2 diet plus 750 FTU/kg phytase (NCP-2); and vi) NC-2 with 100 kcal/kg ME deficient diet plus 1,000 FTU/kg phytase and multi-carbohydrase: 2,200 U/kg galactomannanase, 30,000 U/kg xylanase, 22,000 U/kg ß-glucanase, and 700 U/kg α-galactosidase (NCPM). Broilers in the PC group and those fed enzyme-supplemented diets exhibited greater (P < 0.05) growth performance in terms of body weight (BW), average daily gain (ADG), and feed conversion ratio (FCR), along with enhanced tibia mineralization through the ash, calcium (Ca), phosphorus (P) composition, and tibia breaking strength compared to NC diets throughout the study. Among the treatments, broilers assigned to the NCPM group showed greater (P < 0.05) levels of energy and P digestibility on days 21 and 35. Concerning carcass characteristics, the leg meat yield was greater (P < 0.05) in broilers fed the NCP-2 diet compared to all other treatments on days 21 and 35. Supplementation of phytase at doses of 500 FTU/kg and 750 FTU/kg effectively recovers AP deficiencies of 0.20% and 0.25%, respectively, in broiler diets without compromising the growth performance of broilers. Additionally, combining multi-carbohydrase and phytase led to AP and energy loss recovery, which improved tibia mineralization and nutrient digestibility through their synergistic interaction.

2.
Poult Sci ; 103(12): 104326, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39342689

RESUMO

A study evaluated the effects of phytase, 25-hydroxyvitamin D3 (25OHD), and cocci vaccination on broilers fed a diet reduced in calcium (Ca) and available phosphorus (avP) under Eimeria challenge. A total of 840 one-day-old male broilers were assigned to a 2 × 5 factorial arrangement based on cocci vaccination and dietary treatments. Half of the birds were vaccinated against coccidia on d 1, and all birds were orally challenged with Eimeria spp. (sporulated oocysts: 12,500 of E. maxima, 12,500 of E. tenella, and 62,500 of E. acervulina) on d 14. Dietary treatments included: 1) a nutrient adequate diet (PC); 2) a diet reduced by 0.2% in Ca and avP (NC); 3) NC plus 1,500 FTU/kg of phytase (NC+PHY); 4) NC plus 3,000 IU/kg of 25OHD (NC+25OHD); 5) NC with both PHY and 25OHD (NC+PHY+25OHD). SAS was used for data analysis, with significance set at P ≤ 0.05. Pre-infection growth performance was comparable across the treatments. However, vaccinated birds exhibited higher body weight (BW) and body weight gain (BWG) from 0 to 6 d postinoculation (DPI; P < 0.05). The NC diet reduced BWG from 6 to 12 DPI and increased the feed conversion ratio (FCR) during 6 to 12 DPI and the overall period (0-26 d) compared to the PC birds. In contrast, the supplementation with phytase, 25OHD, or both, returned BWG and FCR to levels seen with the PC diet (P < 0.01). Vaccinated birds also had reduced gut permeability at 5 DPI, increased intestinal villus height, and lower expression levels of the tight junction proteins junctional adhesion molecule 2 (JAM2) and occludin (OCLN) at 6 DPI (P < 0.05). Interestingly, the cocci vaccine resulted in lower E. acervulina but higher E. tenella oocyst shedding at 6 DPI (P < 0.01). Interaction effects were observed for duodenal lesion scores and ileal crypt depth at 6 DPI (P < 0.05). In conclusion, coccidial vaccination improved growth performance, decreased intestinal permeability, enhanced intestinal morphology, and modulated tight junction protein gene expression under Eimeria infection. Reducing dietary Ca and avP levels adversely affected growth performance and FI during the recovery phase, but these negative effects could be mitigated by supplementing with phytase or 25OHD.

3.
Transl Anim Sci ; 8: txae132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346698

RESUMO

Supplementing swine diets with phytase increases phosphorus release by approximately 50% from cereal phytates. The increase in phosphorus availability allows for a reduction in dietary phosphorus supplementation from mineral sources and decreases the environmental impact of pork production through a decrease in phosphorus excretion. Superdosing phytase has been reported to boost swine productivity, improve the digestibility of other nutrients, and mitigate the antinutritional effects of phytates. However, there are significant cost differences among phytase products. Bacterial phytases are considered more modern, often with a higher cost of inclusion. A study was conducted with 288 piglets that were 21 d of age and weighed 6.43 ±â€…0.956 kg. Pigs were divided into four groups. Each group of pigs was fed a different experimental diet varying in phytase source and level: fungal phytase (Aspergillus niger) at 500 FTU/kg of diet, fungal phytase at 2,000 FTU/kg, bacterial phytase (Escherichia coli) at 500 FTU/kg, and bacterial phytase at 2,000 FTU/kg. No differences were found for phytase sources or doses on productivity at 14 and 21 d postweaning. However, piglets supplemented with 2,000 FTUs/kg of phytase in the diet during the first 21 d of nursery exhibited a 5.8% better feed conversion (P = 0.02). An interaction between phytase source and dose was observed for average live weight and daily weight gain over the 42-d nursery period (P < 0.05). Supplementing the diet with 2,000 FTU/kg of fungal phytase improved daily weight gain and live weight throughout the experimental period compared to piglets supplemented with 500 FTU/kg of the same phytase source. Additionally, it resulted in better final weights compared to piglets supplemented with 500 FTU/kg of bacterial phytase. Phytase inclusion at 2,000 FTU/kg improved feed conversion by 2.07% over the 42-d nursery period. The most economically favorable feed conversion ratios were observed when supplementing the diet with fungal phytase at 2,000 FTUs/kg.

4.
BMC Genomics ; 25(1): 838, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242559

RESUMO

Fishmeal and fish oil have been the main sources of protein and fatty acid for aquaculture fish. However, their increasing price and low sustainability have led the aquafeed industry to seek sustainable alternative feedstuffs to meet the nutritional requirements of fish and improve their health and performance. Plant proteins have been successfully used to replace fishery derivatives in aquafeeds, but the presence of anti-nutritional substances is a potential drawback of this approach. Thus, it has been reported that phytate breakdown can be caused by feed supplementation with exogenous phytase. The inclusion of microalgae has been proposed to improve gut functionality in fish fed diets with a high vegetable protein content. The aim of this study was to evaluate the effect on the growth and gut microbiota of European seabass (Dicentrarchus labrax) juveniles of a diet containing a blend of microalgae (Arthrospira platensis and Nannochloropsis gaditana) and different concentrations of phytase. An 83-day feeding trial was conducted, comprising four experimental diets with 2.5% microalgae and 500, 1,000, 2,000, or 10,000 phytase units (FTU)/kg feed and a microalgae- and phytase-free control diet. At the end of the trial, a significantly increased body weight was observed in fish fed the diet with the highest phytase concentration (10,000 FTU/kg) versus controls, although the gut bacterial composition did not differ from controls in alpha or beta diversity with either majority (Weighted UniFrac) or minority bacterial strains (Unweighted UniFrac). In comparison to the control group, the groups fed diets with 1,000 or 2,000 FTU/kg diets had a lower alpha diversity (Shannon's diversity index), while those fed diets with 500 FTU/kg or 1,000 FTU/kg showed distinct clusters in beta diversity (involving minority ASVs). According to these findings, the diet containing the 2.5% microalgae blend with 10,000 FTU/kg may be useful to increase the aquafeed quality and sustain the growth performance of juvenile European seabass.


Assuntos
6-Fitase , Ração Animal , Bass , Suplementos Nutricionais , Microbioma Gastrointestinal , Microalgas , Animais , 6-Fitase/metabolismo , Bass/crescimento & desenvolvimento , Bass/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Aquicultura/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-39264744

RESUMO

This experiment aimed to evaluate the effects of low doses of Quillaja saponin (QS) or phytase (PHY) on growth performance, nutrient digestibility, faecal gas emissions, and carcass grade in growing-finishing pigs. A total of 72 pigs (Landrace × Yorkshire × Duroc), each weighing 25.82 ± 1.68 kg, were selected and randomly assigned to three treatment groups. Each group had six replicates, with four pigs per pen, and the allocation was based on the four initial body weight and sex of the pigs. They were randomly divided into the following three diet groups: the basal diet as a control (CON) group, the basal diet + 0.02% PHY; and the basal diet + 0.01% QS. The experiment period lasted for 110 days. The results of adding 0.01% QS to the basal diet of pigs show that it can significantly increase the body weight (BW) of growing-finishing pigs on the 110th day (p < 0.05). QS can significantly increase the average daily weight gain (ADG) on Days 80-110 of the experiment (p < 0.05). QS can significantly increase the total average daily weight gain (TADG) of growing-finishing pigs during the entire experimental period (p < 0.05) and has a tendency to improve the average daily feed intake and feed conversion rate during the entire experimental period. However, QS has no significant effect on pig nutrient digestibility and carcass grade. In addition, we also found that QS has a tendency to reduce carbon dioxide emissions. However, adding 0.02% PHY to the basal diet of growing-finishing pigs can only increase the TADG during the entire experimental period. Throughout the experiment, adding PHY to the diet had no significant impact on the nutrient digestibility, faecal gas emissions, and carcass grade of growing-finishing pigs. In summary, adding QS to feed can significantly improve the growth performance of growing-finishing pigs, and has a tendency to improve faecal gas emissions. PHY can only improve the growth performance of growing-finishing pigs.

6.
Poult Sci ; 103(11): 104191, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217662

RESUMO

Dietary phytate P (PP) concentration impacts Ca and P digestibility in broilers. Research was conducted to determine the impact of increasing concentration of dietary PP, with and without phytase, on broiler standardized ileal digestibility (SID) of Ca and P. Digestible (Dig) Ca and P were calculated by multiplying SID and the analyzed dietary Ca and P concentrations. The experiment was a factorial arrangement of 2 phytase (0 and 1,000 U/kg) and 4 PP (0.16, 0.23, 0.29, and 0.34%) concentrations. Treatments were fed for 36 h from 20 to 22 d of age (4 b/pen, n ≥ 7 replicate pens/treatment). Different ratios of corn and corn germ were used to achieve the desired PP concentrations. A limestone with 800 µm geometric mean diameter was used as the sole Ca source to achieve 0.7% Ca in the final diets (96% Ca from limestone). An additional diet was fed that was N, Ca- and P-free, for the determination of endogenous losses of each nutrient. Distal ileal digesta were pooled from all birds in a pen. There were no interactions between PP and phytase on SID Ca or Dig Ca from limestone. Irrespective of phytase inclusion, increasing PP from 0.16 to 0.34% decreased SID Ca from 53.8 to 38.1% (P < 0.05). The SID Ca averaged 41.5 and 51.4% in diets containing 0 and 1000 U phytase/kg, respectively, across all PP concentrations (P < 0.05). Interactions were seen between PP and phytase on SID and Dig P (P < 0.05) with SID P of 31.1, 24.0, 20.1, and 16.3% for broilers fed 0.16, 0.23, 0.29, and 0.34% PP diets without phytase, respectively. When phytase was included at 1000 U/kg, SID P was 89.9, 87.5, 73.9 and 60.4% for diets containing 0.16, 0.23, 0.29 and 0.34% PP, respectively (P < 0.05). Overall, phytase improved SID Ca and P independent of PP concentration. However, with increasing PP concentration, both SID Ca and P were negatively affected.


Assuntos
6-Fitase , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Cálcio da Dieta , Galinhas , Dieta , Digestão , Fósforo na Dieta , Ácido Fítico , Zea mays , Animais , Galinhas/fisiologia , Galinhas/metabolismo , Ácido Fítico/metabolismo , Ração Animal/análise , Digestão/efeitos dos fármacos , Zea mays/química , Dieta/veterinária , Cálcio da Dieta/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , 6-Fitase/metabolismo , 6-Fitase/administração & dosagem , Fósforo na Dieta/metabolismo , Masculino , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Distribuição Aleatória , Íleo/metabolismo , Íleo/fisiologia , Fósforo/metabolismo
7.
Br Poult Sci ; : 1-9, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320974

RESUMO

1. The objective of this study was to test the effect of microbial phytase and calcium (Ca) levels on the Zn bioavailability depending on the Zn source.2. A total of 144, one-day-old broilers received a diet containing 40 mg Zn/kg for 1 week. They were then assigned to one of the eight experimental treatments during 2 weeks. Diets contained 27 mg native Zn and were formulated according to a 2 × 2 × 2 factorial design with two added Zn sources (23 mg Zn/kg), sulphate (ZnSO4) or oxide (ZnO); two dietary Ca levels of either 6 (low) or 10 g/kg (moderate); and two microbial phytase levels, of either 0 or 750 phytase unit/kg.3. Moderate Ca plus phytase improved body weight gain (BWG) and low Ca level without microbial phytase decreased tibia weight (Ca × Phy; p = 0.049). Zinc oxide resulted in a higher tibia development (i.e. tibia weight and length; p < 0.05) and BWG (p = 0.009) and lower FCR (p < 0.001) compared to ZnSO4.4. Phytase improved tibia Zn concentration especially in birds given ZnSO4 compared to ZnO (Zn × Phy; p = 0.049). Moderate Ca diets improved tibial characteristics and Zn deposition compared to low Ca diets (p < 0.05).5. Soluble Zn in the gizzard increased in the presence of phytase (p = 0.011), while higher dietary Ca reduced this in birds receiving ZnO (p = 0.004). In the jejunum, Zn solubility was higher with phytase (p = 0.008).6. Under the conditions of this study, dietary levels of Ca and microbial phytase affect Zn availability in broilers more than the Zn source.

8.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39113412

RESUMO

The choice of the calcium (Ca) source in pig diets and the addition of formic acid may affect the gastrointestinal inositol phosphate (InsP) degradation and thereby, phosphorus (P) digestibility in pigs. This study assessed the effects of different Ca sources (Ca carbonate, Ca formate), exogenous phytase, and chemical acidification on InsP degradation, nutrient digestion and retention, blood metabolites, and microbiota composition in growing pigs. In a randomized design, 8 ileal-cannulated barrows (24 kg initial BW) were fed 5 diets containing Ca formate or Ca carbonate as the only mineral Ca addition, with or without 1,500 FTU/kg of an exogenous hybrid 6-phytase. A fifth diet was composed of Ca carbonate with phytase but with 8 g formic acid/kg diet. No mineral P was added to the diets. Prececal InsP6 disappearance and P digestibility were lower (P ≤ 0.032) in pigs fed diets containing Ca formate. In the presence of exogenous phytase, InsP5 and InsP4 concentrations in the ileal digesta were lower (P ≤ 0.019) with Ca carbonate than Ca formate. The addition of formic acid to Ca carbonate with phytase diet resulted in greater (P = 0.027) prececal InsP6 disappearance (87% vs. 80%), lower (P = 0.001) InsP5 concentration, and greater (P ≤ 0.031) InsP2 and myo-inositol concentrations in the ileal digesta. Prececal P digestibility was greater (P = 0.004) with the addition of formic acid compared to Ca carbonate with phytase alone. Prececal amino acid (AA) digestibility of some AA was greater with Ca formate compared to Ca carbonate but only in diets with phytase (P ≤ 0.048). The addition of formic acid to the diet with Ca carbonate and phytase increased (P ≤ 0.006) the prececal AA digestibility of most indispensable AA. Exogenous phytase affected more microbial genera in the feces when Ca formate was used compared to Ca carbonate. In the ileal digesta, the Ca carbonate diet supplemented with formic acid and phytase led to a similar microbial community as the Ca formate diets. In conclusion, Ca formate reduced prececal InsP6 degradation and P digestibility, but might be of advantage in regard to prececal AA digestibility in pigs compared to Ca carbonate when exogenous phytase is added. The addition of formic acid to Ca carbonate with phytase, however, resulted in greater InsP6 disappearance, P and AA digestibility values, and changed ileal microbiota composition compared to Ca carbonate with phytase alone.


The study aimed to investigate the effects of dietary calcium sources, exogenous phytase, and formic acid on inositol phosphate (InsP) degradation and nutrient digestibility in ileal-cannulated growing pigs. It also evaluated the concentrations of phosphorus, calcium, and myo-inositol in the blood, the composition of the microbiota in the ileal digesta and feces, and the concentrations of volatile fatty acids in the feces. Replacing calcium carbonate with calcium formate in the feed reduced prececal InsP6 disappearance and phosphorus digestibility. However, adding formic acid to a diet containing calcium carbonate and phytase enhanced prececal InsP6 disappearance and phosphorus digestibility, and increased InsP2 and myo-inositol concentrations in the ileal digesta. The dietary treatments resulted in more pronounced alterations of the microbiota in the feces than the ileal digesta. In ileal digesta, the shifts in relative abundance were primarily evident among low-abundant genera, while in feces, changes were observed in a larger number among genera with higher levels of abundance. The findings of this study suggest that calcium formate is not a suitable alternative to calcium carbonate for phosphorus digestibility in growing pigs. The release of phosphorus from InsP by exogenous phytase can be increased by adding formic acid.


Assuntos
6-Fitase , Aminoácidos , Ração Animal , Cálcio da Dieta , Dieta , Digestão , Formiatos , Fosfatos de Inositol , Animais , 6-Fitase/administração & dosagem , 6-Fitase/metabolismo , 6-Fitase/farmacologia , Formiatos/farmacologia , Formiatos/administração & dosagem , Ração Animal/análise , Digestão/efeitos dos fármacos , Cálcio da Dieta/metabolismo , Cálcio da Dieta/farmacologia , Dieta/veterinária , Fosfatos de Inositol/metabolismo , Suínos , Masculino , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Microbioma Gastrointestinal/efeitos dos fármacos , Minerais/metabolismo , Suplementos Nutricionais/análise
9.
J Sci Food Agric ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132918

RESUMO

BACKGROUND: Consumption of pseudocereal-based foods decreased in phytate concentration can provide better nutrition concerning mineral bioavailability. This study aimed to evaluate the mineral bioavailability of quinoa sourdough-based snacks in a murine model. The mice were divided into five groups. One group was fed with basal snacks; three control groups received quinoa-based snacks made from non-fermented dough, dough without inoculum, and chemically acidified dough; and the test group (GF) received quinoa snacks elaborated from sourdough fermented by a phytase-positive strain, Lactiplantibacillus plantarum CRL 1964. Food intake, body weight, and mineral concentration in blood and organs (liver, kidney, and femur) were determined. RESULTS: Food consumption increased during the feeding period and had the highest (16.2-24.5%) consumption in the GF group. Body weight also increased during the 6-weeks of trial. The GF group showed higher (6.0-10.2%) body weight compared with the other groups from the fifth week. The concentrations of iron, zinc, calcium, magnesium, and phosphorus in blood, iron and phosphorus in the liver, manganese and magnesium in the kidney, and calcium and phosphorus in the femur increased significantly (1.1-2.7-fold) in the GF group compared to the control groups. CONCLUSION: The diet that includes quinoa snacks elaborated with sourdough fermented by phytase-positive strain L. plantarum CRL 1964 increased the concentrations of minerals in the blood, liver, kidney, and femur of mice, counteracting the antinutritional effects of phytate. This study demonstrates that the diminution in phytate content and the consequent biofortification in minerals are a suitable tool for producing novel foods. © 2024 Society of Chemical Industry.

10.
J Adv Vet Anim Res ; 11(2): 376-383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39101093

RESUMO

Objective: Current research aimed to compare the effects of fungal and bacterial phytase with or without citric acid (CA) on growth performance, serum mineral profile, bone quality, and nutrient retention in birds given non-phytate phosphorus (nPP)-deficient diets. Materials and Methods: A total of 216 Indian River broiler chicks were disturbed into six groups, namely, i) positive control (PC), ii) negative control (NC) contained 0.2% lower nPP than that in the PC diet, iii) NC + fungal phytase (Aspergillus niger), iv) NC + fungal phytase with 2% CA, v) NC + bacterial phytase (Escherichia coli), and vi) NC + bacterial phytase with 2% CA. Results: Compared to the PC group, the NC group showed poor performance, serum phosphorus (P) content, P retention, and bone quality. However, with the inclusion of phytase, all these phenomena were improved. The addition of bacterial phytase showed better values compared with fungal phytase. The main effects of phytase were significant for the feed conversion ratio (FCR), metabolizable energy conversion ratio (MECR), and P retention. The addition of CA, either with fungal or bacterial phytases, did not show considerable beneficial effects on overall performances. However, the main effects of CA were significant on the FCR, MECR, and crude protein conversion ratio. Conclusion: Incorporating bacterial and fungal phytase into low-nPP diets enhanced the broiler's performance. The effects of bacterial phytase were more apparent than those of fungal phytase. However, the efficacy of phytase based on the source might relate to dose, and other factors need further investigation.

11.
Braz J Microbiol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162933

RESUMO

INTRODUCTION: Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets. OBJECTIVE: The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes. METHODOLOGY: We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters. RESULTS: The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 °C and pH 5.5, with kinetic parameters (Km = 3.39 × 10-3 M and a Vmax of 7.092 mM/min) indicating efficient substrate affinity. CONCLUSION: The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.

12.
J Microbiol Biotechnol ; 34(8): 1660-1670, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39081259

RESUMO

The aim of this study was to modify phytase YiAPPA via protein surficial residue mutation to obtain phytase mutants with improved thermostability and activity, enhancing its application potential in the food industry. First, homology modeling of YiAPPA was performed. By adopting the strategy of protein surficial residue mutation, the lysine (Lys) and glycine (Gly) residues on the protein surface were selected for site-directed mutagenesis to construct single-site mutants. Thermostability screening was performed to obtain mutants (K189R and K216R) with significantly elevated thermostability. The combined mutant K189R/K216R was constructed via beneficial mutation site stacking and characterized. Compared with those of YiAPPA, the half-life of K189R/K216R at 80°C was extended from 14.81 min to 23.35 min, half-inactivation temperature (T50 30) was increased from 55.12°C to 62.44°C, and Tm value was increased from 48.36°C to 53.18°C. Meanwhile, the specific activity of K189R/K216R at 37°C and pH 4.5 increased from 3960.81 to 4469.13 U/mg. Molecular structure modeling analysis and molecular dynamics simulation showed that new hydrogen bonds were introduced into K189R/K216R, improving the stability of certain structural units of the phytase and its thermostability. The enhanced activity was primarily attributed to reduced enzyme-substrate binding energy and shorter nucleophilic attack distance between the catalytic residue His28 and the phytate substrate. Additionally, the K189R/K216R mutant increased the hydrolysis efficiency of phytate in food ingredients by 1.73-2.36 times. This study established an effective method for the molecular modification of phytase thermostability and activity, providing the food industry with an efficient phytase for hydrolyzing phytate in food ingredients.


Assuntos
6-Fitase , Estabilidade Enzimática , Mutagênese Sítio-Dirigida , 6-Fitase/genética , 6-Fitase/metabolismo , 6-Fitase/química , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Concentração de Íons de Hidrogênio , Cinética , Ácido Fítico/metabolismo , Modelos Moleculares , Temperatura , Temperatura Alta , Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Indústria Alimentícia , Fosfatase Ácida , Proteínas de Escherichia coli
13.
Br Poult Sci ; 65(5): 595-604, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38995214

RESUMO

1. This study was conducted to determine the effects of graded levels of phytase on the performance, egg quality and gut health of white laying hens.2. Treatments consisted of a negative control (NC) diet containing 0.14% available phosphorus (avP), positive control (PC) diet containing 0.35% avP provided via dicalcium phosphate (DCP) and DCP replaced in the PC by with three graded levels of phytase derived from Komagataella phaffii at 500 (PC-500), 750 (PC-750) and 1000 (PC-1000) FTU/kg which provided 0.176%, 0.188% and 0.200% of avP, respectively.3. Egg production, feed intake, feed conversion ratio and jejunal morphometry were negatively affected in NC-fed birds (p < 0.05). Considering the whole period, birds fed a diet supplemented with graded levels of phytase shared the same egg production and feed intake levels with PC birds (p < 0.05). Feed conversion ratio was significantly lowered by 4.9%, 1.6% and 7.6% in hens fed on diets PC-500, PC-750 and PC-1000, respectively compared to those fed the PC (p < 0.05).4. Neither of the dietary treatments affected cracked eggs, dirty eggs, eggshell breaking strength and eggshell thickness. Dietary supplementation of phytase significantly increased villus surface area by 15%, 36% and 40% in PC-500, PC-750 and PC-1000 birds, respectively compared to PC (p < 0.05).5. A significant increase in lactobacillus count was observed in line with increasing the level of phytase (p < 0.05). Dietary treatments had no effect on the caecal coliform or aerobic populations. Furthermore, phytase supplementation significantly increased the concentrations of total caecal short-chain fatty acid (SCFA; p < 0.01).6. In conclusion, along with improving performance parameters, the inclusion of phytase in laying hen diets can ameliorate intestinal morphology and stimulate caecal microflora and increase SCFA concentrations.


Assuntos
6-Fitase , Ração Animal , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Ácidos Graxos Voláteis , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Galinhas/anatomia & histologia , Galinhas/microbiologia , Ração Animal/análise , 6-Fitase/administração & dosagem , 6-Fitase/metabolismo , Dieta/veterinária , Feminino , Suplementos Nutricionais/análise , Ceco/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Distribuição Aleatória , Relação Dose-Resposta a Droga
14.
Artigo em Inglês | MEDLINE | ID: mdl-39034764

RESUMO

This study evaluated the effects of different nutrient matrices, with or without phytase supplementation, on growth performance, nutrient digestibility, ileal amino acid (AA) digestibility, and blood inositol in pigs fed a complex diet based on corn-soybean meal. Four hundred newly weaned cross-bred (Landrace × Yorkshire × Duroc) 21-day-old piglets of initial body weight 6.35 ± 1.91 kg were allotted to one of the five dietary treatments: Control (CNT), a corn-soybean-based standard diet; negative control 1 (NC1), a standard diet with reduced available phosphorus (Av.P) (-0.125%), metabolizable energy (ME) (-40 kcal), and crude protein (CP) (-0.3%); NC1 with 500 phytase units per kilogramme (FTU/kg) (N1P5); negative control 2 (NC2), a standard diet with greater reduction of Av.P (-0.150%), ME (-55 kcal), and CP (-0.45%,); and NC2 with 1000 FTU/kg (N2P10). Piglets were housed in a random arrangement based on sex and body weight and data were analyzed as a randomized complete block design using analysis of variance. Results showed that the body weight and average daily gain of the NC2 treatment were lower (p < 0.05) compared to NC2. Gain to feed ratio was greater (p < 0.05) in the CNT and N1P5 treatments compared to the NC1, NC2, and N2P10 treatments. The CP digestibility was higher (p < 0.05) in N1P5 and N2P10 treatments compared to other treatments. Moreover, the digestibility of phosphorus and calcium was higher (p < 0.05) in N1P5 and N2P10 treatments than in CNT, NC1, and NC2 treatments. The digestibility of non-dispensable AA; histidine, isoleucine, leucine, phenylalanine, and valine were increased (p < 0.05) in N1P5 and N2P10 than in CNT, NC1, and NC2 treatments. Nevertheless, the digestibility of dispensable AA, glutamic acid, was higher (p < 0.05) in N1P5 and N2P10 treatments than in CNT, NC1, and NC2 treatments. Blood myo-inositol concentration was higher (p < 0.05) in N1P5 and N2P10 treatments compared to CNT, NC1, and NC2 treatments in phase 2. These results demonstrated enhanced outcomes under conditions of moderate deficiency, whereas more pronounced deficiencies necessitated increased phytase dosages to observe significant improvements. The efficacy of phytase was evident in its ability to elevate average daily gain, gain to feed ratio, phosphorus and calcium, CP, AA, and blood myo-inositol.

15.
EFSA J ; 22(7): e8876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957752

RESUMO

The food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.8) is produced with the non-genetically modified Aspergillus niger strain PHY93-08 by Shin Nihon Chemical Co., Ltd. The food enzyme is free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two of the food manufacturing processes, dietary exposure was calculated only for the remaining seven processes. It was estimated to be up to 0.763 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise safety concerns. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2560 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3355. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

16.
Front Bioeng Biotechnol ; 12: 1426208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962663

RESUMO

Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.

17.
Front Vet Sci ; 11: 1413920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966563

RESUMO

A 42-days study was conducted to evaluate the effects of different dietary types (corn-or wheat-soybean meal-based diet) and phytase (Phy) or a multi-carbohydrase and phytase complex (MCPC) supplementation on growth performance, digestibility of phosphorus (P), intestinal transporter gene expression, plasma indexes, bone parameters, and fecal microbiota in growing pigs. Seventy-two barrows (average initial body weight of 24.70 ± 0.09 kg) with a 2 × 3 factorial arrangement of treatments and main effects of diet type (corn-or wheat-soybean meal-based-diets) and enzyme supplementation (without, with Phy or with MCPC). Each group was designed with 6 replicate pens. The MCPC increased (p < 0.05) average daily gain (ADG) and final body weight (BW). A significant interaction (p = 0.01) was observed between diet type and enzyme supplementation on apparent total tract digestibility (ATTD) of P. The ATTD of P was higher (p < 0.05) in wheat soybean meal-based diets compared to corn-soybean meal-based diets. Compared with the corn-soybean meal-based diet, the relative expression of SLC34A2 and VDR genes in the ileum and SLC34A3 in jejunum of growing pigs fed the wheat-soybean meal based diet was lower (p < 0.05). The MCPC significantly reduced (p < 0.05) the relative expression of TRPV5 and CALB1 genes in the ileum and increased the expression of CALB1 in the duodenum compared to control diet. The phytase increased (p < 0.05) the relative expression of SLC34A1 gene in the duodenum in comparison to control diet and MCPC-supplemented diet. The Ca and P contents in plasma from pigs fed corn-soybean meal-based diet were higher (p < 0.05) than those from pigs fed wheat-soybean meal-based diet, and the parathyroid hormone (PTH) and calcitonin (CT) concentrations were lower (p < 0.05) than those fed wheat-soybean meal-based diet. The content of Ca and P in the femur and the bone strength of pigs in the corn-soybean meal group were significantly higher (p < 0.05) than those in the wheat-soybean meal groups. The phytase increased (p < 0.05) the Ca and P content and bone strength of the femur. Additionally, diet type and both enzymes significantly improved fecal microbial diversity and composition. Taken together, diet type and exogenous enzymes supplementation could differently influence the growth performance, utilization of phosphorus, intestinal transporter gene expression, bone mineralization and microbial diversity and composition in growing pigs.

18.
Poult Sci ; 103(8): 103886, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878747

RESUMO

The objective of this study was to determine the effects of dietary available phosphorus (P) levels and dietary phytase added into the very low-P diet on the performance, mineral balance, odor emission, and stress responses in growing pullets and laying hens during 13 to 32 wk of age. One hundred sixty-eight pullets (Hy-Line Brown) were randomly assigned into 1 of 4 dietary treatments with 7 replicates of 6 birds each. Experimental diets were formulated to contain 3 graded P levels at 0.25, 0.35, and 0.45% during 13 to 15 wk (phase 1), 0.25, 0.35, and 0.45% during 16 to 18 wk (phase 2), and 0.20, 0.30, and 0.40% during 19 to 32 wk (phase 3). In addition, dietary phytase (500 FTU/kg matrix values) was added into the very low-P diets (0.20% during 13-15 wk, 0.25% during 16-18 wk, and 0.20% during 19-32 wk) to meet the nutritional adequacy with standard P diets. In all phases, decreasing dietary P levels did not affect (P > 0.05) growth, laying performance, and egg qualities. Decreasing dietary P levels linearly increased the relative duodenal and oviduct weights (P < 0.05), and quadratically increased the relative ovary weight in pullets (P = 0.016). Dietary phytase lowered (P = 0.021) the relative duodenal weight compared with the very low-P diet. Tibia breaking strength and tibia Mg contents in pullets were linearly lowered (P < 0.05) as dietary P levels decreased. Dietary phytase tended to increase (P = 0.091) tibia breaking strength and significantly increased (P = 0.025) tibia Mg content compared with the very low-P diet. Dietary P levels and dietary phytase affected (P < 0.05) ileal crypt depth and ileal villus height: crypt depth ratio in pullets. Decreasing dietary P levels linearly decreased (P < 0.01) crude fat digestibility and P excretion in both pullets and laying hens. Dietary phytase reversed (P < 0.05) the very low-P diet-mediated decrease of crude fat digestibility in pullets and laying hens. Dietary P levels and dietary phytase affected (P < 0.05) odor emission including ammonia in pullets and total volatile fatty acids in laying hens. Finally, lowering dietary P levels increased (P < 0.01) yolk corticosterone concentrations and the increased corticosterone concentration by the very low-P diet was reversed by dietary phytase. Collectively, our study shows that decreasing dietary P levels induced nutritional and physiological responses in pullets and laying hens and these P-mediated negative effects were mitigated by dietary phytase.


Assuntos
6-Fitase , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Suplementos Nutricionais , Fósforo na Dieta , Distribuição Aleatória , Animais , 6-Fitase/administração & dosagem , 6-Fitase/metabolismo , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Feminino , Dieta/veterinária , Ração Animal/análise , Fósforo na Dieta/metabolismo , Fósforo na Dieta/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Fósforo/metabolismo
19.
Vet Sci ; 11(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921997

RESUMO

Two experiments were performed to evaluate the effect of a biosynthetic 6-phytase added at 500 phytase unit (FTU)/kg diet on growth performance, bone mineralization, and nutrient digestibility and retention in weaned piglets and growing-finishing pigs. Experiments were performed on 90 weaned male and female piglets with an average initial body weight (BW) at 7.7 ± 0.73 kg, 26 days of age) and 300 male and female growing pigs (initial BW: 21.0 ± 3.44 kg) for 43 and 98 days in experiments 1 and 2, respectively. In each experiment, the animals were assigned to one of three treatments according to a randomized complete block design. The treatments consisted of a positive-control (PC) diet formulated to meet nutrient requirements; a negative-control (NC) diet reduced similarly in calcium (Ca) and digestible P by 0.15 and 0.12% points in phases 1 and 2, respectively, in piglets and by 0.14, 0.11, and 0.10% points, respectively, in phases 1, 2, and 3 in growing-finishing pigs, compared with PC diet; and a NC diet supplemented with the new 6-phytase at 500 FTU/kg diet (PHY). The dietary P and Ca depletion reduced (p < 0.05) the final BW (-11.9%; -7.8%,), average daily gain (ADG, -17.8%; -10.1%), average daily feed intake (ADFI, -9.9%; -6.0%), gain-to-feed (G:F) ratio (-8.9%; -4.6%), and apparent total tract digestibility (ATTD) of P (-7.7% points; -6.7% points) in nursery piglets and growing pigs, respectively. It also decreased (p < 0.001) P and Ca retention by 6.1 and 9.4% points, respectively, in nursery pigs and ash, P, and Ca contents in metacarpal bones by 18.4, 18.4, and 16.8%, respectively, in growing pigs. Compared to animals fed the NC diet, phytase supplementation improved (p < 0.001) the final BW (+7.7%; +11.3%), ADG (+12.5%; +15.0%), G:F ratio (+8.4%; +5.8%), ATTD of Ca (+10.8% points; +7.2% points), and ATTD of P (+18.7% points; +16.6% points) in weaned piglets and growing pigs, respectively. In addition, phytase also increased (p < 0.001) P and Ca retention by 6.1 and 9.4% points, respectively, in nursery pigs and ash, P, and Ca contents in metacarpal bones by 17.7, 15.0, and 15.2%, respectively, in growing pigs. The final BW, ADG, G:F ratio, and bone traits in animals fed the NC diet supplemented with phytase were comparable to animals fed the PC diet. This finding indicates the ability of this novel biosynthetic phytase to restore performance and bone mineralization by improving the availability of P and Ca in piglets and growing pigs fed P- and Ca-deficient diets.

20.
Animals (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891610

RESUMO

An experiment was conducted to evaluate the effects of increasing the dose of a novel consensus bacterial 6-phytase variant expressed in Trichoderma reesei (PhyG) in broilers fed complex diets highly deficient in minerals, dig AA, and energy. Diets were a nutrient-adequate control (PC); a nutrient-reduced control (NC) formulated with a reduction in available P (avP) by 0.199%, Ca by 0.21%, crude protein by 0.72-1.03%, dig Lys by 0.064-0.084%, Na by 0.047%, and ME by 87.8 kcal/kg, respectively; and NC supplemented with PhyG at 500, 1000, and 2000 FTU/kg feed. BW was decreased and FCR increased in the NC vs. PC, while the PhyG treatments were similar to the PC. Carcass yield and bone ash were also maintained with PhyG supplementation. Phytase provided economic benefit on a feed cost per kg of weight basis for 1 to 35 d; the cost reductions equated to USD 0.006, 0.016, and 0.02/kg BWG at 500, 1000, and 2000 FTU/kg. In conclusion, this trial demonstrated that supplementation with a novel consensus phytase variant in diets highly deficient in minerals, dig AA, and energy maintained growth performance and provided economic benefit, with production benefits being maximized at inclusion levels of 2000 FTU/kg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA