Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Am J Transl Res ; 16(7): 3259-3272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114700

RESUMO

OBJECTIVE: Anemia is a pathological condition characterized by reduced oxygen bioavailability and/or changes in hematological parameters. This study investigated the anti-anemic activities of Carica papaya (CP) phytoconstituents in aluminium-chloride-induced anemic rats. METHOD: Twenty-seven rats were randomized into nine groups of three rats as follows; group 1 was the normal (non-induced) group, 2-9 were anemic rats administered 1 mL distilled water, standard drug (3 mg/kg body weight (bw) ferrous sulphate), 100, 300 and 500 mg/kg bw of crude methanolic extract of CP (CMECP) of the leaf and 100, 300 and 500 mg/kg bw of CMECP of the seed respectively in the first stage of the study. In the second stage, thirty-three rats were randomized into eleven groups of three rats as follows; group 1 was the normal group, 2-11 were anemic rats treated with 1 mL distilled water, standard drug, 75 mg/kg bw, 150 mg/kg of alkaloid fraction of CP seed, 75 mg/kg bw, 150 mg/kg bw of flavonoid fraction of CP seed, 75 mg/kg bw and 150 mg/kg of alkaloid fraction of CP leaf, 75 mg/kg bw and 150 mg/kg bw of flavonoid fraction of CP leaf respectively. RESULTS: Treatment of anemic rats with CP extracts and fractions of the seed and leaf significantly reversed the hematological parameters and body weight of anemic rats in a dose independent fashion. The CMECP leaf at 100 and 500 mg/kg gave PCV of 42.50±0.50 and 47.00±0.50, while the seed gave 49.50±0.50 and 42.50±0.50 respectively after 2 weeks of treatment. However, the alkaloid and flavonoid fraction of CP presented better anti-anemic properties probably due to constituents' synergism. CONCLUSION: This study concluded that CP possesses phytoconstituents which potentiates it as a safe anti-anemic drug candidate.

2.
Nat Prod Res ; : 1-5, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119750

RESUMO

Phytochemical study of Gazania rigens whole plant led to isolation and structural characterisation of six known compounds including lupeol (1), lupenone (2), ß-sitosterol 3-O-ß-glucopyranoside (3), dunalianoside D (4), 3,5-di-O-caffeoylquinic acid (5), and tachioside (6). Compounds (1-4, and 6) were isolated for the first time. The structures of the isolated compounds were elucidated using different spectroscopic analyses such as 1H,13C, and DEPT NMR analyses, besides HR-ESI-MS analysis. The isolated compounds and fractions were screened for in vitro antimicrobial activity against various bacterial and fungal strains. Only lupeol (1) exhibited a moderate antibacterial activity against K. pneumoniae with IC50 value of 19.05 µg/mL. The cytotoxic potential of the total ethanol extract and its derived fractions of G. rigens was evaluated against the MDA-MB-468 TNBC cell line using MTT assay. The petroleum ether, EtOAc and n-BuOH fractions exhibited a moderate inhibitory action with IC50 values of 22.42 ± 0.63, 25.55 ± 1.53, and 28.07 ± 0.63, respectively.

3.
Food Chem ; 459: 140363, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39089196

RESUMO

Annona squamosa L. (Annonaceae) is a versatile tree with an edible fruit showing abundant medicinal and industrial applications. The nutritional values of this plant are due to carbohydrates, proteins, amino acids, and vitamins. Ethnopharmacological uses referred to treatment of dysentery, headlice, cancer sores, purgative, and tonic effects. The main reported biological activities for A. squamosa L. were cytotoxic, antidiabetic, antimicrobial, antiparasitic, antioxidant, antimalarial, molluscidal, anthelmintic and insecticidal activities, and its chemical classes encompassed alkaloids, diterpenes, acetogenins, and cyclopeptides. The nutritional content of A. squamosa L. and their main chemical components, biological effects, and the different applications were discussed in this review. This comprehensive review strived to compile all the relevant data in the period between 1990 and 2023 covering databases PubMed, ScienceDirect, Web of Science, Googlescholar and Reaxys concerning A. squamosa L. different parts with their reported phytochemical constituents and biological activities to integrate a better understanding of the medicinal values.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39143873

RESUMO

BACKGROUND: Neuropathic pain is a complex chronic condition resulting from the damage or dysfunction of the nervous system. Conventional therapies offer limited success and often come with various adverse effects. Therefore, the exploration of alternative therapies, such as phytoconstituents, may be of substantial interest for their potential to alleviate neuropathic pain. OBJECTIVES: This review systematically examines the diverse roles and mechanisms of various phytoconstituents in modulating neuropathic pain. In this study, a comprehensive analysis of phytoconstituents in neuropathic pain is carried out to understand their mechanism in preventing the disease. METHOD: The current search is done in the databases of Google Scholar, PubMed Central, ScienceDirect, and Scopus using the keywords: neuropathic pain, phytoconstituents as analgesics, physiological effects of medicinal plants, and natural products, to find the most relevant articles of the last 10 years. RESULT: Out of 125 articles, 112 were included in this study, which revealed that several phytoconstituents inhibit several biomarkers responsible for neuropathic pain. Moreover, this review highlights the underlying molecular pathways and targets through which these bioactive compounds exert their therapeutic effects, emphasizing their potential as novel pharmacological agents. CONCLUSION: This study concludes that phytoconstituents may possess potential applications in managing neuropathic pain and could be effectively used as an alternative approach to mitigate the condition with enhanced risk of safety and tolerability.

5.
Molecules ; 29(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064848

RESUMO

Harlequin glory bower (Clerodendrum trichotomum) is a shrub or small tree belonging to the Lamiaceae family, native to Japan, Korea, and eastern China. It has esthetic value and in Europe, it is cultivated as an ornamental plant. Its sweet-smelling flowers have a white or pink crown. The calyx turns from green to pink-purple over time, providing an especially decorative touch around surrounding the ripe deep-blue fruits that persist until winter. In the areas of its natural occurrence, the leaves and young shoots of C. trichotomum, and sometimes the roots, flowers and fruits, are used in folk medicine due to its anti-inflammatory, analgesic, anticancer, sedative, and hypotensive effects. Products based on Harlequin glory are also used in the treatment of rheumatoid arthritis, joint pain, skin inflammation, or asthma. Preliminary research on the composition of raw material suggests that its health-promoting effect is associated with the presence of numerous secondary metabolites, including phenylpropanoids, flavonoids, lignans, terpenoids, steroids, alkaloids, and anthraquinones. This work reviews the current state of knowledge about the phytochemistry and in vitro and in vivo pharmacological properties of the extracts and main active components isolated from C. trichotomum. It also indicates that before it can be used in modern medicine, further research is necessary regarding the safety and efficacy of the raw material, its mechanisms of action, and dosage.


Assuntos
Clerodendrum , Extratos Vegetais , Clerodendrum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
6.
Heliyon ; 10(13): e33327, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027488

RESUMO

This investigation portrays the phytochemical screening, green synthesis, characterization of Fe and Zn nanoparticles, their antibacterial, anti-inflammation, cytotoxicity, and anti-thrombolytic activities. Four dissimilar solvents such as, n-hexane, chloroform, ethyl acetate and n-butanol were used to prepare the extracts of Phlomis cashmeriana Royle ex Benth. This is valued medicinal plant (Family Lamiaceae), native to mountains of Afghanistan and Kashmir. In the GC-MS study of its extract, the identified phytoconstituents have different nature such as terpenoids, alcohol and esters. The synthesized nanoparticles were characterized by SEM, UV, XRD, and FT-IR. The phytochemical analysis showed that the plant contains TPC (total phenolic content) 297.51 mg GAE/g and TFC (total flavonoid content) 467.24 mg CE/g. The cytotoxicity values have shown that the chloroform, n-butanol and aqueous extracts were more toxic than other extracts. The anti-inflammatory potential of n-butanol and aqueous extracts was found higher than all other extracts. Chloroform and n-hexane extracts have low MIC values against both E. coli and S. aureus bacterial strains. Chloroform and aqueous extracts have great anti-thrombolytic potential than all other extracts. Overall, this study successfully synthesized the nanoparticles and provides evidence that P. cashmeriana have promising bioactive compounds that could serve as potential source in the drug formulation.

7.
Biochem Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955878

RESUMO

The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.

8.
Curr Diabetes Rev ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956911

RESUMO

BACKGROUND: Diabetes mellitus (DM), arising from pancreatic ß-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alphaamylase like acarbose manage glucose but pose adverse effects, prompting interest in plantderived alternatives rich in antioxidants and anti-inflammatory properties. OBJECTIVE: The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment. METHOD: This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data. RESULTS: Plant-derived inhibitors, including A. deliciosa, B. egyptiaca, and N. nucifera, exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects. CONCLUSION: The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.

.

9.
Curr Pharm Des ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39051579

RESUMO

Psoriasis (Pso) is an autoimmune inflammatory skin disease characterized by red plaques covered in silver scales. The existing treatments provide limited benefits and are associated with certain drawbacks which limit their use. Thus, there is a need to explore more options that are highly target-specific and associated with minimal side effects. Researchers have thoroughly investigated the use of herbal drugs for their therapeutic potential. Preclinical studies demonstrate that phytochemicals such as curcumin, psoralen, and dithranol have antipsoriatic effects. These phytoconstituents inhibit the signalling pathways, such as the interleukin (IL) 23/Th17 axis and IL36 inflammatory loop involved in the pathogenesis of Pso. These phytoconstituents downregulate the pro-inflammatory cytokines like IL17 and tumor necrosis factor (TNF)-α. However, their application in clinical settings is limited due to poor bioavailability and access to target sites. Combining phytoconstituents with modern delivery platforms like nanocarriers can address these shortcomings and improve therapeutic efficacy. This review explores the potential of herbal remedies as a substitute for conventional therapies, emphasizing the clinical trials conducted with these herbal medicines. The paper is supported by the discussion on nanocarriers like liposomes, niosomes, emulsomes, ethosomes, nanostructured lipid carriers, nanoemulsions, and dendrimers that are used to deliver herbal medicines.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38953968

RESUMO

Triple negative breast cancer is considered to be a malignancy of grave concern with limited routes of treatment due to the absence of specific breast cancer markers and ambiguity of other potential drug targets. Poor prognosis and inadequate survival rates have prompted further research into the understanding of the molecular pathophysiology and targeting of the disease. To overcome the recurrence and resistance mechanisms of the TNBC cells, various approaches have been devised, and are being continuously evaluated to enhance their efficacy and safety. Chemo-Adjuvant therapy is one such treatment modality being employed to improve the efficiency of standard chemotherapy. Combining chemo-adjuvant therapy with other upcoming approaches of cancer therapeutics such as phytoconstituents and nanotechnology has yielded promising results in the direction of improving the prognosis of TNBC. Numerous nanoformulations have been proven to substantially enhance the specificity and cellular uptake of drugs by cancer cells, thus reducing the possibility of unintended systemic side effects within cancer patients. While phytoconstituents offer a wide variety of beneficial active constituents useful in cancer therapeutics, most favorable outcomes have been observed within the scope of polyphenols, isoquinoline alkaloids and isothiocyanates. With an enhanced understanding of the molecular mechanisms of TNBC and the advent of newer targeting technologies and novel phytochemicals of medicinal importance, a new era of cancer theranostic treatments can be explored. This review hopes to instantiate the current body of research regarding the role of certain phytoconstituents and their potential nanoformulations in targeting specific TNBC pathways for treatment and diagnostic purposes.

11.
Phytother Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023299

RESUMO

Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38994626

RESUMO

BACKGROUND: Oral cancer poses a significant threat to public health worldwide. In addition, because many chemotherapy treatments have negative side effects, natural herbs may be beneficial for oral cancer therapy. Achyranthes aspera (AA), a potential medicinal herb, exerts various pharmacological and biochemical activities. OBJECTIVE: The present study aimed to predict the anti-oral cancer potential of AA using in silico tools and cell death by in vitro testing. METHODS: A total of fourteen bioactive constituents from AA herb were selected using phytochemical databases. The toxicity of AA herb extract was analysed through MTT assay against oral carcinoma A253 cell line. The binding activities of the phytocomponents against serine/ threonine-specific protein kinases isoforms, namely Akt1 (PDB ID: 3qkk) and Akt2 (PDB ID: 2jdo) proteins, were analysed using Discovery Studio 2021 and PyRx docking software. RESULTS: Cell viability data revealed that AA extract decreased the viability and reduced the number of live cells of the oral carcinoma A253 cell line in a dose-dependent manner. The halfmaximal concentration (IC50) value of AA was assessed as 204.74 µg/ml. Based on binding affinity, saponin C (-CDOCKER energy = -77.9862), oleanolic acid (-CDOCKER energy = - 49.4349), spinasterol (-CDOCKER energy = -38.1246), 36,47-dihydroxyhenpentacontan-4-one (-CDOCKER energy = -32.4386), and 20-hydroxyecdysone (-CDOCKER energy = -31.9138) were identified as the best compounds against Akt1, while, compounds saponin C (-CDOCKER energy = -134.412), oleanolic acid (-CDOCKER energy = -90.0846), spinasterol (-CDOCKER energy = -78.3213), 20-hydroxyecdysone (-CDOCKER energy = -80.1049), and ecdysone (- CDOCKER energy = -73.3885) were identified as Akt2 inhibitors. These top compounds fulfilled drug score values, pharmacokinetic and physicochemical characteristics, and druglikeness parameters. CONCLUSION: The present findings reveal that the lead phytomolecules of AA could be effective and developed as a prospective drug against oral cancer.

13.
Front Plant Sci ; 15: 1378881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957601

RESUMO

Platostoma palustre (Blume) A. J. Paton is an important edible and medicinal plant. To gain a comprehensive and clear understanding of the variation patterns of metabolites in P. palustre, we employed the UPLC-MS platform along with widely targeted metabolomics techniques to analyze the metabolites in the stems and leaves of P. palustre at different stages. Our results revealed a total of 1228 detected metabolites, including 241 phenolic acids, 203 flavonoids, 152 lipids, 128 terpenes, 106 amino acids, 79 organic acids, 74 saccharides, 66 alkaloids, 44 lignans, etc. As the growth time increased, the differential metabolites (DAMs) mainly enriched in P. palustre leaves were terpenoids, phenolic acids, and lipids, while the DAMs primarily enriched in stems were terpenoids. Compared to stems, there were more differential flavonoids in leaves, and saccharides and flavonoids were significantly enriched in leaves during the S1 and S2 stages. Additionally, we identified 13, 10, and 23 potential markers in leaf, stem, and leaf vs. stem comparison groups. KEGG enrichment analysis revealed that arginine biosynthesis was the common differential metabolic pathway in different growth stages and tissues. Overall, this study comprehensively analyzed the metabolic profile information of P. palustre, serving as a solid foundation for its further development and utilization.

14.
Toxicol Res (Camb) ; 13(4): tfae098, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38957785

RESUMO

Background: Alzheimer's disease (AD) presents as a widespread neurodegenerative condition impacting over 55 million individuals globally, with an annual rise of 10 million new cases. Despite its staggering prevalence, the absence of a definitive cure establishes the need for a revisit. Methods: We explore the alternative strategies, focusing on the potential therapeutic efficacy of ethanolic extracts derived from the fruit and leaf of Ficus racemosa Linn. Results: The investigation comprehensively explores pharmacognostic, phytochemical, toxicological, and pharmacological characteristics. In addition to pharmacognostic and physicochemical analyses, toxicological evaluations conducted on experimental animals demonstrated the innocuous nature of the ethanolic extracts (from both fruit and leaf) of F. racemosa, as evidenced by assessments of hemocompatibility, oxidative parameters, and vital organ histology. Phytochemical profiling via GC-MS identified 48 and 80 phytoconstituents in the fruit and leaf extracts, respectively. These constituents were screened for bioactive potential using the "Lipinski Rule of Five," resulting in the selection of 25 and 33 constituents from fruit and leaf extracts, respectively. Subsequent molecular docking studies against the AChE enzyme revealed promising interactions of the selected phytoconstituents. Furthermore, the top-scoring phytoconstituents were subjected to in silico screening to assess their interactions with ß- and γ-secretase enzymes, in addition to the AChE enzyme. The cumulative findings substantiate the therapeutic utility of the plant extracts, particularly in the context of AD. Conclusion: In conclusion, our investigation highlights the promising therapeutic potential of selected phytoconstituents derived from ethanolic extracts of F. racemosa in mitigating AD pathology by targeting key enzyme sites such as AChE, ß-, and γ-secretase.

15.
Arch Microbiol ; 206(7): 325, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913205

RESUMO

The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.


Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana Múltipla , Compostos Fitoquímicos , Antibacterianos/farmacologia , Antibacterianos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos
16.
Arch Microbiol ; 206(7): 294, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850339

RESUMO

Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.


Assuntos
Antibacterianos , Biofilmes , Compostos Fitoquímicos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
17.
Phytother Res ; 38(8): 3935-3953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831683

RESUMO

Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.


Assuntos
Antioxidantes , Genisteína , Genisteína/farmacologia , Genisteína/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
18.
J Biotechnol ; 392: 48-58, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38906221

RESUMO

Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.


Assuntos
Adesão Celular , Movimento Celular , Guaiacol , Melanoma Experimental , Nanopartículas , Animais , Movimento Celular/efeitos dos fármacos , Nanopartículas/química , Camundongos , Guaiacol/análogos & derivados , Guaiacol/farmacologia , Guaiacol/química , Linhagem Celular Tumoral , Adesão Celular/efeitos dos fármacos , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Paxilina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
19.
Arch Pharm (Weinheim) ; : e2400194, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877616

RESUMO

Tanacetum nitens ( Boiss. & Noë)  Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.

20.
Curr Drug Targets ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38879770

RESUMO

Arthritis, a prevalent inflammatory joint condition, presents challenges for effective therapeutic interventions, with conventional treatments often limited in efficacy and associated with adverse effects. Recent years have witnessed a growing interest in exploring natural compounds, particularly phytoconstituents, renowned for their anti-inflammatory and joint-protective properties. This review aims to illuminate the potential of employing nanotherapeutic approaches with phytoconstituents for enhanced arthritis management. The integration of nanotechnology with phytoconstituents emerges as a promising strategy, addressing limitations in traditional arthritis treatments. Nanocarriers like liposomes and nanoparticles provide a platform for targeted drug delivery, improving the bioavailability of phytoconstituents. Furthermore, the combined effects of phytoconstituents can be leveraged to target multiple pathways in arthritis pathogenesis, including inflammation, oxidative stress, and cartilage degradation. Key phytoconstituents, such as curcumin, resveratrol, and quercetin, exhibit anti-inflammatory and immunomodulatory properties. Nevertheless, their therapeutic potential is often impeded by challenges like poor solubility, stability, and bioavailability. Nanocarriers offer solutions by enhancing pharmacokinetics and enabling sustained release, thereby boosting overall therapeutic efficacy. The review explores the mechanisms underlying the anti-arthritic effects of phytoconstituents and their nanoformulations, including the modulation of pro-inflammatory cytokines, inhibition of matrix metalloproteinases, and reduction of oxidative stress. In summary, the integration of phytoconstituents with nanotechnology presents a promising avenue for developing targeted and effective arthritis therapies. This comprehensive review serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking innovative approaches to address the intricate challenges associated with arthritis management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA