RESUMO
The repeated returns of vertebrates to the marine ecosystems since the Triassic serve as an evolutionary model to understand macroevolutionary change. Here we investigate the effects of the land-to-sea transition on disparity and constraint of the vertebral column in aquatic carnivorans (Carnivora; Pinnipedia) to assess how their functional diversity and evolutionary innovations influenced major radiations of crown pinnipeds. We use three-dimensional geometric morphometrics and multivariate analysis for high-dimensional data under a phylogenetic framework to quantify vertebral size and shape in living and extinct pinnipeds. Our analysis demonstrates an important shift in vertebral column evolution by 10-12 million years ago, from an unconstrained to a constrained evolutionary scenario, a point of time that coincides with the major radiation of crown pinnipeds. Moreover, we also demonstrate that the axial skeleton of phocids and otariids followed a different path of morphological evolution that was probably driven by their specialized locomotor strategies. Despite this, we found a significant effect of habitat preference (coastal versus pelagic) on vertebral morphology of crown taxa regardless of the family they belong. In summary, our analysis provides insights into how the land-to-sea transition influenced the complex evolutionary history of pinniped vertebral morphology.
Assuntos
Caniformia , Carnívoros , Animais , Filogenia , Ecossistema , Coluna Vertebral/anatomia & histologia , Evolução BiológicaRESUMO
Pinnipeds (seals, sea lions, walruses, and their fossil relatives) are one of the most successful mammalian clades to live in the oceans. Despite a well-resolved molecular phylogeny and a global fossil record, a complete understanding of their macroevolutionary dynamics remains hampered by a lack of formal analyses that combine these 2 rich sources of information. We used a meta-analytic approach to infer the most densely sampled pinniped phylogeny to date (36 recent and 93 fossil taxa) and used phylogenetic paleobiological methods to study their diversification dynamics and biogeographic history. Pinnipeds mostly diversified at constant rates. Walruses, however, experienced rapid turnover in which extinction rates ultimately exceeded speciation rates from 12 to 6 Ma, possibly due to changing sea levels and/or competition with otariids (eared seals). Historical biogeographic analyses, including fossil data, allowed us to confidently identify the North Pacific and the North Atlantic (plus or minus Paratethys) as the ancestral ranges of Otarioidea (eared sealsâ +â walrus) and crown phocids (earless seals), respectively. Yet, despite the novel addition of stem pan-pinniped taxa, the region of origin for Pan-Pinnipedia remained ambiguous. These results suggest further avenues of study in pinnipeds and provide a framework for investigating other groups with substantial extinct and extant diversity.
Assuntos
Caniformia , Fósseis , Filogenia , Animais , Caniformia/genética , Caniformia/classificação , Evolução Biológica , Especiação Genética , Filogeografia , Extinção Biológica , Evolução MolecularRESUMO
23 livers of South American fur seal (Arctocephalus australis) found stranded in southern Brazilian beaches were evaluated for Persistent Organic Pollutants (POPs) and Polycyclic Aromatic Hydrocarbons (PAHs). POPs (DDTs, mirex, eldrin, dieldrin, aldrin, isodrin, HCHs, chlordanes and PCBs) and PAHs in livers were Soxhlet extracted, analyzed and quantified using Gas Chromatography Tandem Mass Spectrometry (GC-TQMS). The main POPs found were PCBs and DDTs, totaling 81 %. Among pesticides, mirex followed DDTs, possibly due to usage in Uruguay, followed by Σdrins, ΣCHLs and ΣHCHs. Naphthalene was the major PAH found, while heavier compounds did not significantly bioaccumulate. Concentrations of POPs resembled previous findings for A. australis. Considering only juveniles, no POPs showed significant differences between sexes. Lipidic content, weight and length did not show any correlation with POP concentration. This was the first record of PAHs and PBDEs in South American fur seals, and the levels of these pollutants were relatively low.
Assuntos
Poluentes Ambientais , Otárias , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Bifenilos Policlorados/análise , Hidrocarbonetos Clorados/análise , Poluentes Orgânicos Persistentes , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Mirex , Brasil , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Ambientais/análise , Praguicidas/análise , Fígado/química , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análiseRESUMO
The Mediterranean monk seal Monachus monachus is one of the most endangered pinnipeds in the world, and is classified as "Endangered" by the International Union for the Conservation of Nature. Any additional knowledge about the species is invaluable to its effective conservation. In the present study, we deployed an autonomous underwater recorder in an important reproductive area of the Mediterranean monk seal in Greece to describe its underwater vocal repertoire. Over the 330 h of continuous recordings, 9231 vocalizations were labelled as potentially produced by Mediterranean monk seals, and 1694 good quality calls were analyzed. We defined 18 call types divided into three main call categories: harmonic, noisy, and pulsative calls. We also described the soundscape in which this endangered species lives and found that human activities around the two main pupping caves had a strong impact on the sonic environment of these seals: the noise level produced by boat traffic was high, and occurred on an hourly (25 to 50 min/hour) and daily basis (10.8 to 16.9 h/day). Such high levels of noise might not only impair the communication of the species, but also impact its survival, as chronic noise can induce physiological stress.
RESUMO
Blubber is a modified subcutaneous adipose tissue in marine mammals that provides energy storage, thermoregulation, hydrodynamic locomotion, and buoyancy. Blubber displays vertical stratification by lipid content, fatty acid composition, and vascularization, leading to the assumption that deeper blubber layers are metabolically active, while superficial layers are mainly structural and thermoregulatory. However, few studies have examined functional stratification of marine mammal blubber directly, especially in pinnipeds. We characterized morphological and transcriptional differences across blubber layers in the northern elephant seal, a deep-diving and fasting-adapted phocid. We collected blubber from seals early in their fasting period and divided blubber cores into three similarly sized portions. We hypothesized that the innermost blubber portion would have higher 1) heterogeneity in adipocyte size, 2) microvascular density, and 3) expression of genes associated with metabolism and hormone signaling than outer blubber. We found that adipocyte area and variance increased from outermost (skin-adjacent) to innermost (muscle-adjacent) blubber layers, suggesting that inner blubber has a higher capacity for lipid storage and turnover than outer blubber. Inner blubber had a higher proportion of CD144+ endothelial cells, suggesting higher microvascular density. In contrast, outer blubber had a higher proportion of CD4+ immune cells than inner blubber, suggesting higher capacity for response to tissue injury. Transcriptome analysis identified 61 genes that were differentially expressed between inner and outer blubber layers, many of which have not been studied previously in marine mammals. Based on known functions of these genes in other mammals, we suggest that inner blubber has potentially higher 1) adipogenic capacity, 2) cellular diversity, and 3) metabolic and neuroendocrine signaling activity, while outer blubber may have higher 1) extracellular matrix synthesis activity and 2) responsiveness to pathogens and cell stressors. We further characterized expression of nine genes of interest identified by transcriptomics and two adipokines with higher precision across blubber layers using targeted assays. Our study provides functional insights into stratification of blubber in marine mammals and a molecular key, including CD144, CD4, HMGCS2, GABRG2, HCAR2, and COL1A2, for distinguishing blubber layers for physiological and functional studies in seals.
RESUMO
Mites from the family Halarachnidae Oudemans 1906 are obligate endoparasites that colonize the respiratory tracts of free-living and captive marine mammals. Infestations can range from mild to severe and result in respiratory tract irritation or impairment. Nasopulmonary acariasis was determined to be a contributing cause of death among several southern sea otters Enhydra lutris nereis Merriam 1904 in a longitudinal study of otter mortality, and proximity to Pacific harbor seals Phoca vitulina richardii Gray 1864 was a significant risk factor for sea otter infestation. Beyond scattered opportunistic reports, each halarachnid mite species' affinity for particular hosts and the extent of mite transmission between host species is poorly understood. We investigated the identity and prevalence of nasopulmonary mites from Pacific harbor seals, California sea lions Zalophus californianus Lesson 1828, northern elephant seals Mirounga angustirostris Gill 1866, northern fur seals Callorhinus ursinus Linnaeus 1758, and Guadalupe fur seals Arctocephalus philippii townsendi Merriam 1897 to complement published nasopulmonary mite findings from sympatric southern sea otters during a comparable timeframe. Halarachnid mite infestation was common among California sea lions (74.1%), northern fur seals (73.3%), and northern elephant seals (46.6%), but was less common among harbor seals (18.7%) and Guadalupe fur seals (8.8%). Observed host-mite relationships suggest a distinct host specificity, with genus Orthohalarachne infesting otariids, and genus Halarachne infesting phocids and lutrinids along the California coast. Harbor seals and southern sea otters were the primary hosts of H. halichoeri, but one nothern elephant seal was infested with both H. miroungae and a single H. halichoeri. We also present the first high-resolution SEM images for H. miroungae and O. attenuata and possible evidence for a new host record for H. halichoeri.
RESUMO
Vocal production learning, the ability to modify the structure of vocalizations as a result of hearing those of others, has been studied extensively in birds but less attention has been given to its occurrence in mammals. We summarize the available evidence for vocal learning in mammals from the last 25 years, updating earlier reviews on the subject. The clearest evidence comes from cetaceans, pinnipeds, elephants and bats where species have been found to copy artificial or human language sounds, or match acoustic models of different sound types. Vocal convergence, in which parameter adjustments within one sound type result in similarities between individuals, occurs in a wider range of mammalian orders with additional evidence from primates, mole-rats, goats and mice. Currently, the underlying mechanisms for convergence are unclear with vocal production learning but also usage learning or matching physiological states being possible explanations. For experimental studies, we highlight the importance of quantitative comparisons of seemingly learned sounds with vocal repertoires before learning started or with species repertoires to confirm novelty. Further studies on the mammalian orders presented here as well as others are needed to explore learning skills and limitations in greater detail. This article is part of the theme issue 'Vocal learning in animals and humans'.
Assuntos
Aprendizagem , Mamíferos , Vocalização Animal , AnimaisRESUMO
Modern pinnipeds (true and eared seals) employ two radically different swimming styles, with true seals (phocids) propelling themselves primarily with their hindlimbs, whereas eared seals (otariids) rely on their wing-like foreflippers.1,2 Current explanations of this functional dichotomy invoke either pinniped diphyly3-5 or independent colonizations of the ocean by related but still largely terrestrial ancestors.6-8 Here, we show that pinniped swimming styles form an anatomical, functional, and behavioral continuum, within which adaptations for forelimb swimming can arise directly from a hindlimb-propelled bauplan. Within phocids, southern seals (monachines) show a convergent trend toward wing-like, hydrodynamically efficient forelimbs used for propulsion during slow swimming, turning, bursts of speed, or when initiating movement. This condition is most evident in leopard seals, which have well-integrated foreflippers with little digit mobility, reduced claws, and hydrodynamic characteristics comparable to those of forelimb-propelled otariids. Using monachines as a model, we suggest that the last common ancestor of modern seals may have been hindlimb-propelled and aquatically adapted, thus resolving the apparent contradiction at the root of pinniped evolution.
Assuntos
Caniformia , Otárias , Focas Verdadeiras , Natação , Animais , Membro AnteriorRESUMO
BACKGROUND: The systematic of several marine diphyllobothriid tapeworms of pinnipeds has been revised in recent years. However, 20 species of Diphyllobothrium from phocids and otariids are still recognized as incertae sedis. We describe a new species of Diphyllobothrium from the intestine of California sea lions Zalophus californianus (Lesson) (type-host) and South American sea lions Otaria flavescens (Shaw). METHODS: Zalophus californianus from the Pacific coast of the USA and O. flavescens from Peru and Argentina were screened for parasites. Partial fragments of the large ribosomal subunit gene (lsrDNA) and the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene were amplified for 22 isolates. Properly fixed material from California sea lions was examined using light and scanning electron microscopy. RESULTS: A total of four lsrDNA and 21 cox1 sequences were generated and aligned with published sequences of other diphyllobothriid taxa. Based on cox1 sequences, four diphyllobothriid tapeworms from O. flavescens in Peru were found to be conspecific with Adenocephalus pacificus Nybelin, 1931. The other newly generated sequences fall into a well-supported clade with sequences of a putative new species previously identified as Diphyllobothrium sp. 1. from Z. californianus and O. flavescens. A new species, Diphyllobothrium sprakeri n. sp., is proposed for tapeworms of this clade. CONCLUSIONS: Diphyllobothrium sprakeri n. sp. is the first diphyllobothriid species described from Z. californianus from the Pacific coast of North America, but O. flavescens from Argentina, Chile and Peru was confirmed as an additional host. The present study molecularly confirmed the first coinfection of two diphyllobothriid species in sea lions from the Southern Hemisphere.
Assuntos
Difilobotríase/veterinária , Diphyllobothrium/classificação , Leões-Marinhos/parasitologia , Animais , Diphyllobothrium/anatomia & histologia , Diphyllobothrium/genética , Diphyllobothrium/isolamento & purificação , Feminino , Genes Mitocondriais , Intestinos/parasitologia , Masculino , América do Norte , Filogenia , América do SulRESUMO
The extant genera of fur seals and sea lions of the family Otariidae (Carnivora: Pinnipedia) are thought to have emerged in the Pliocene or the early Pleistocene in the North Pacific. Among them, the Steller sea lion (Eumetopias jubatus) is the largest and distributed both in the western and eastern North Pacific. In contrast to the limited distribution of the current population around the Japanese Islands that is now only along the coast of Hokkaido, their fossil records have been known from the middle and late Pleistocene of Honshu Island. One such important fossil specimen has been recorded from the upper lower Pleistocene Omma Formation (ca. 1.36-0.83 Ma) in Kanazawa, Ishikawa Prefecture, Japan, which now bears the institutional number GKZ-N 00001. Because GKZ-N 00001 is the earliest fossil having been identified as a species of the sea lion genus Eumetopias, it is of importance to elucidate the evolutionary history of that genus. The morphometric comparisons were made among 51 mandibles of fur seals and sea lions with GKZ-N 00001. As results of bivariate analyses and PCA based on 39 measurements for external morphologies with internal structures by CT scan data, there is almost no difference between GKZ-N 00001 and extant male individuals of E. jubatus. In this regard, GKZ-N 00001 is identified specifically as the Steller sea lion E. jubatus. Consequently, it is recognized as the oldest Steller sea lion in the North Pacific. About 0.8 Ma, the distribution of the Steller sea lion had been already established at least in the Japan Sea side of the western North Pacific.
RESUMO
BACKGROUND: A series of sea lion bites in open-water swimmers recently gained the attention of the national and international media. Pinniped (the clade including seals and sea lions) bites historically have been in people who hunt or handle marine mammals. As populations of humans and pinnipeds continue to grow, interactions with animals by those participating in recreational activities are likely to become more frequent. CASE REPORTS: In December of 2017 and January of 2018, four sea lion (Zalophus californianus) bites in humans occurred at a popular open-water recreational swimming area in San Francisco, California. Three swimmers required treatment at a local trauma center and two required surgery. Two of the wounds were potentially life threatening; one swimmer required a field tourniquet to stop bleeding from the antecubital fossa, and the bite in another narrowly missed the femoral artery. The purpose of this report is to offer an in-depth discussion of antimicrobial use and rabies postexposure prophylaxis in patients with severe pinniped bites. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Information from this report can be used in conjunction with input from local experts to develop a thoughtful therapeutic plan for patients with severe pinniped bites. Doxycycline is the first-line antibiotic therapy, but broader coverage may be needed for severe wounds with the potential for contamination. The likelihood of rabies is low, and rabies postexposure prophylaxis should be reserved for cases that involve unusually aggressive animal behavior or other factors suggestive of rabies.
Assuntos
Mordeduras e Picadas/complicações , Leões-Marinhos , Natação/lesões , Animais , Mordeduras e Picadas/epidemiologia , Mordeduras e Picadas/fisiopatologia , Temperatura Baixa , Humanos , São Francisco , Natação/fisiologia , População UrbanaRESUMO
The Antarctic fur seal (Arctocephalus gazella) is an abundant Antarctic otariid. Here, we present the complete mitochondrial DNA sequence of this species, which includes 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and the control region for a total length of 16,156 bp. A phylogenetic analysis including all 25 publically available pinniped mitogenomes nested the Antarctic fur seal within the Otariid clade, which was clearly resolved from the Phocidae and Odobenidae.
RESUMO
A nearly complete pinniped skeleton from the middle Miocene Okoppezawa Formation (ca 16.3-13.9 Ma), Hokkaido, northern Japan, is described as the holotype of Allodesmus uraiporensis sp. nov. The new species is distinguishable from other species of the genus by having the palatine fissure (incisive foramen) that is located anterior to the canine, an anteriorly located supraorbital process of the frontal, and by having the calcaneum with a developed peroneal tubercle. Our phylogenetic analysis suggests that the subfamily Allodesminae are represented by two genera, Atopotarus and Allodesmus, and the latter genus is represented by at least six species; Al. kernensis, Al. sinanoensis, Al. naorai, Al. packardi, Al. demerei and Al. uraiporensis sp. nov. Allodesmus uraiporensis sp. nov. is one of the oldest and the northernmost record of the genus in the western North Pacific, and it suggests that the diversification of the genus in the western North Pacific was synchronous to the time of their diversification in the eastern North Pacific.
RESUMO
A new taxon of stem otariid, Eotaria citrica sp. nov., is described from the upper Burdigalian to lower Langhian "Topanga" formation of Orange County, California. The new species is described from mandibular and dental remains that show a unique combination of plesiomorphic and derived characters. Specifically, it is characterized by having trenchant and prominent paraconid cusps in p3-m1, lingual cingula of p2-4 with faint crenulations, premolars and molars with vestigial metaconid, bilobed root of m2 and a genial tuberosity located under p3. Furthermore, additional material of the contemporaneous Eotaria crypta is described, providing new information on the morphology of this taxon. Both species of Eotaria represent the earliest stem otariids, reinforcing the hypothesis that the group originated in the north Eastern Pacific Region. At present, the "Topanga" Fm. pinniped fauna includes Eotaria citrica, Eotaria crypta, the desmatophocid Allodesmus sp., the odobenids Neotherium sp., Pelagiarctos sp. and includes the oldest records of crown pinnipeds in California. Overall this pinniped fauna is similar to the nearly contemporaneous Sharktooth Hill bonebed. However, unambiguous records of Eotaria are still missing from Sharktooth Hill. This absence may be due to taphonomic or paleoenvironmental factors. The new "Topanga" record presented here was integrated into an overview of the late Oligocene through early Pleistocene pinniped faunas of Southern California. The results show an overall increase in body size over time until the Pleistocene. Furthermore, desmatophocids were the largest pinnipeds during the middle Miocene, but were extinct by the beginning of the late Miocene. Odobenids diversified and became the dominant pinnipeds in late Miocene through Pleistocene assemblages, usually approaching or exceeding 3 m in body length, while otariids remained as the smallest taxa. This pattern contrasts with modern assemblages, in which the phocid Mirounga angustirostris is the largest pinniped taxon in the region, odobenids are extinct and medium and small size ranges are occupied by otariids or other phocids.
RESUMO
The complete mitochondrial DNA sequence of the South America fur seal (Arctocephalus australis) was obtained by a shotgun sequencing approach. The mitogenome is 16,372 bp in length and includes the genes coding for the two rRNA species (12S and 16S), 13 protein-coding genes, 22 transfer RNA genes, and a control region. The base composition is 33.0% for A, 26.7% for C, 26.1 for T and 14.2% for G, with an overall GC content of 40.9%. The description of this mitogenome will be useful for further phylogeny and genetic studies on Pinnipeds.
RESUMO
This study aimed to assess the enamel ultrastructure in modern otariid pinnipeds and in the extinct walrus Pelagiarctos. Teeth of the New Zealand fur seal (Arctocephalus forsteri), sea lion (Phocarctos hookeri), and fossil walrus Pelagiarctos thomasi were embedded, sectioned, etched, and analyzed via scanning electron microscopy. The enamel of NZ otariids and Pelagiarctos was prismatic and moderately thick, measuring 150-450 µm on average. It consisted of transversely oriented Hunter-Schreger bands (HSBs) from the enamel-dentine junction (EDJ) to near the outer surface, where it faded into prismless enamel less than 10 µm thick. The width of HSB was variable and averaged between 6 and 10 prisms, and they presented an undulating course both in longitudinal and cross sections. The overall organization of the enamel was similar in all teeth sampled; however, the enamel was thicker in canines and postcanines than in incisors. The crowns of all teeth sampled were uniformly covered by enamel; however, the grooved incisors lacked an enamel cover on the posterior side of the buccal face. Large tubules and tuft-like structures were seen at the EDJ. HSB enamel as well as tubules and tufts at the EDJ suggest increased occlusal loads during feeding, a biomechanical adaptation to avoid enamel cracking and failure. Despite overall simplification in tooth morphology and reduced mastication, the fossil and modern pinnipeds analyzed here retained the complex undulating HSB structure of other fossils and living Carnivora, while other marine mammals such as cetaceans developed simplified radial enamel.
Assuntos
Adaptação Fisiológica , Caniformia/anatomia & histologia , Esmalte Dentário/ultraestrutura , Fósseis , Morsas/anatomia & histologia , Animais , Comportamento Alimentar , Microscopia Eletrônica de VarreduraRESUMO
Stillbirth is a small and often cryptic fraction of neonatal mortality in mammals including pinnipeds. As part of an investigation into the poor reproductive success of the endangered New Zealand sea lion (Phocarctos hookeri), archived tissues from 37 stillborn pups born on Enderby Island between 1998 and 2012 were examined using histopathological techniques. Apart from bronchopneumonia with neutrophilic infiltration in 4 cases, few inflammatory conditions were identified in stillborn pups. However, 27/32 (84%) stillborn pups had aspirated squames present in the respiratory tract, without meconium. It is unclear if this finding represents fetal distress during parturition or whether it is a normal finding for this species. Three pups lacked histological evidence of hepatic glycogen storage, which may indicate placental defects or maternal undernutrition. No evidence of infectious disease was found on histopathological analysis, consistent with the low seroprevalence in New Zealand of infections known to cause reproductive failure in other pinniped species. This study forms an important baseline for further examination of stillborn New Zealand sea lion pups, as pup mortality is investigated as a contributor to the species' decline.
Assuntos
Leões-Marinhos , Natimorto/veterinária , Animais , Animais Recém-Nascidos , Espécies em Perigo de Extinção , Feminino , Feto/patologia , Masculino , Nova Zelândia/epidemiologia , Natimorto/epidemiologiaRESUMO
Cophylogenetic studies examine the congruence between host and parasite phylogenies. There are few studies that quantify the relative contribution of coevolutionary events, i.e. duplication, loss, failure-to-diverge, host-switching and spreading in trophically-transmitted parasites at the marine realm. We addressed this issue in the Brachycladiidae, a cosmopolitan digenean family specific to marine mammals. We used, for the first time, distance-based and event-based methods to explicitly test the coevolutionary events that have shaped the current brachycladiid-marine mammal associations. Parasite phylogeny was constructed using mtDNA ND3 sequences of nine brachycladiid species, and host phylogeny using cytochrome b sequences of 104 mammalian species. A total of 50 host-parasite links were identified. Distance-based methods supported the hypothesis of a global non-random association of host and parasite phylogenies. Significant individual links (i.e., 24 out of 50) were those related to Campula oblonga, Nasitrema delphini, N. globicephalae and Brachycladium atlanticum and their associated taxa from the Delphinoidea. Regarding event-based methods, we explored 54 schemes using different combinations of costs for each potential coevolutionary event. Three coevolutionary scenarios were identified across all schemes and in all cases the number of loss events (87-156) was the most numerous, followed by failure-to-diverge (40), duplication (3-6), host-switching (0-3) and cospeciation (0-2). We developed a framework to interpret the evolution of this host-parasite system and confirmed that failure-to-diverge and colonization with or without subsequent diversification could have been decisive in the establishment of the associations between brachycladiids and marine mammals.
Assuntos
Interações Hospedeiro-Parasita , Mamíferos/parasitologia , Trematódeos/classificação , Animais , Organismos Aquáticos , Evolução Biológica , Citocromos b/genética , DNA Mitocondrial/genética , Filogenia , Análise de Sequência de DNA/veterinária , Especificidade da Espécie , Trematódeos/genética , Trematódeos/isolamento & purificaçãoRESUMO
One adaptation crucial to the survival of mammalian lineages that secondarily transitioned from land to water environments was the ability to capture and consume prey underwater. Phocid seals have evolved diverse feeding strategies to feed in the marine environment, and the objectives of this study were to document the specialized feeding morphologies and identify feeding strategies used by extant phocids. This study used principal component analysis (PCA) to determine the major axes of diversification in the skull for all extant phocid taxa and the recently extinct Caribbean monk seal (n = 19). Prey data gathered from the literature and musculoskeletal data from dissections were included to provide a comprehensive description of each feeding strategy. Random Forest analysis was used to determine the morphological, ecological and phylogenetic variables that best described each feeding strategy. There is morphological evidence for four feeding strategies in phocids: filter; grip and tear; suction; and pierce feeding. These feeding strategies are supported by quantitative cranial and mandibular characters, dietary information, musculoskeletal data and, for some species, behavioral observations. Most phocid species are pierce feeders, using a combination of biting and suction to opportunistically catch prey. Grip and tear and filter feeding are specialized strategies with specific morphological adaptations. These unique adaptations have allowed leopard seals (Hydrurga leptonyx) and crabeater seals (Lobodon carcinophaga) to exploit novel ecological niches and prey types. This study provides the first cranial and mandibular morphological evidence for the use of specialized suction feeding in hooded seals (Cystophora cristata), northern elephant seals (Mirounga angustirostris) and southern elephant seals (Mirounga leonina). The most important variables in determining the feeding strategy of a given phocid species were cranial and mandibular shape, diet, and phylogeny. These results provide a framework for understanding the evolution and adaptability of feeding strategies employed by extant phocid species, and these findings can be applied to other pinniped lineages and extinct taxa.
Assuntos
Comportamento Alimentar/fisiologia , Focas Verdadeiras/anatomia & histologia , Focas Verdadeiras/fisiologia , Crânio/anatomia & histologia , Animais , Evolução Biológica , FilogeniaRESUMO
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.