RESUMO
MAIN CONCLUSION: Monoterpenes and phenolics play distinct roles in defending white spruce trees from insect defoliators. Monoterpenes contribute to the toxicity of the foliage, deterring herbivory, whereas phenolics impede budworm growth. This study demonstrates the complex interplay between monoterpenes and phenolics and their collective influence on the defense strategy of white spruce trees against a common insect defoliator. Long-lived coniferous trees display considerable variations in their defensive chemistry. The impact of these defense phenotype variations on insect herbivores of the same species remains to be thoroughly studied, mainly due to challenges in replicating the comprehensive defense profiles of trees under controlled conditions. This study methodically examined the defensive properties of foliar monoterpenes and phenolics across 80 distinct white spruce families. These families were subsequently grouped into two chemotypes based on their foliar monoterpene concentrations. To understand the separate and combined effects of these classes on tree defenses to the eastern spruce budworm, we conducted feeding experiments using actual defense profiles from representative families. Specifically, we assessed budworm response when exposed to substrates amended with phenolics alone or monoterpenes. Our findings indicate that the ratios and amounts of monoterpenes and phenolics present in the white spruce foliage influence the survival of spruce budworms. Phenotypes associated with complete larval mortality exhibited elevated ratios (ranging from 0.4 to 0.6) and concentrations (ranging from 1143 to 1796 ng mg-1) of monoterpenes. Conversely, families characterized by higher phenolic ratios (ranging from 0.62 to 0.77) and lower monoterpene concentrations (ranging from 419 to 985 ng mg-1) were less lethal to the spruce budworm. Both classes of defense compounds contribute significantly to the overall defensive capabilities of white spruce trees. Monoterpenes appear critical in determining the general toxicity of foliage, while phenolics play a role in slowing budworm development, thereby underscoring their collective importance in white spruce defenses.
Assuntos
Mariposas , Picea , Animais , Picea/genética , Mariposas/fisiologia , Larva/fisiologia , Monoterpenos , Árvores , FenóisRESUMO
Recent studies have demonstrated that seed-borne bacteria can enhance the performance of invasive plants in novel introduced habitats with environmental stresses. The effect of this plant-bacteria interaction may vary with plant species or even genotype; however, the genotype-dependent effects of seed bacteria have rarely been assessed. In this study, we examined the effects of bacterial strains isolated from seeds on the genotypes of an invasive xerophytic plant, Lactuca serriola. Plant genotypes were grown under drought conditions, and their plastic responses to bacterial infections were evaluated. Some genotypes produced more biomass, whereas others produced less biomass in response to infection with the same bacterial strain. Notably, the quantity of root-adhering soil depended on the bacterial treatment and plant genotypes and was positively correlated with the plastic responses of plant performance. Because tested bacteria could colonize the plant rhizosphere, bacterial infection appears to induce the differential formation of soil rhizosheaths among plant genotypes, consequently affecting the maintenance of soil water content under drought conditions. Given that drought tolerance is a critical attribute for the invasive success of L. serriola, these results imply that bacterial symbionts can facilitate the establishment of alien plant species, but their effects are likely genotype-specific.
RESUMO
Switchgrass is a promising feedstock for biofuel production, with potential for leveraging its native microbial community to increase productivity and resilience to environmental stress. Here, we characterized the bacterial, archaeal and fungal diversity of the leaf microbial community associated with four switchgrass (Panicum virgatum) genotypes, subjected to two harvest treatments (annual harvest and unharvested control), and two fertilization levels (fertilized and unfertilized control), based on 16S rRNA gene and internal transcribed spacer (ITS) region amplicon sequencing. Leaf surface and leaf endosphere bacterial communities were significantly different with Alphaproteobacteria enriched in the leaf surface and Gammaproteobacteria and Bacilli enriched in the leaf endosphere. Harvest treatment significantly shifted presence/absence and abundances of bacterial and fungal leaf surface community members: Gammaproteobacteria were significantly enriched in harvested and Alphaproteobacteria were significantly enriched in unharvested leaf surface communities. These shifts were most prominent in the upland genotype DAC where the leaf surface showed the highest enrichment of Gammaproteobacteria, including taxa with 100% identity to those previously shown to have phytopathogenic function. Fertilization did not have any significant impact on bacterial or fungal communities. We also identified bacterial and fungal taxa present in both the leaf surface and leaf endosphere across all genotypes and treatments. These core taxa were dominated by Methylobacterium, Enterobacteriaceae, and Curtobacterium, in addition to Aureobasidium, Cladosporium, Alternaria and Dothideales. Local core leaf bacterial and fungal taxa represent promising targets for plant microbe engineering and manipulation across various genotypes and harvest treatments. Our study showcases, for the first time, the significant impact that harvest treatment can have on bacterial and fungal taxa inhabiting switchgrass leaves and the need to include this factor in future plant microbial community studies.
Assuntos
Microbiota/fisiologia , Panicum/genética , Folhas de Planta/genética , Archaea/patogenicidade , Bactérias/patogenicidade , Biodiversidade , Biocombustíveis/microbiologia , Fungos/patogenicidade , Panicum/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do SoloRESUMO
Although microbial communities have been shown to vary among plant genotypes in a number of experiments in terrestrial ecosystems, relatively little is known about this relationship under natural conditions and outside of select model systems. We reasoned that a salt marsh ecosystem, which is characterized by twice-daily flooding by tides, would serve as a particularly conservative test of the strength of plant-microbial associations, given the high degree of abiotic regulation of microbial community assembly resulting from alternating periods of inundation and exposure. Within a salt marsh in the northeastern United States, we characterized genotypes of the foundational plant Spartina alterniflora using microsatellite markers, and bacterial metagenomes within marsh soil based on pyrosequencing. We found significant differences in bacterial community composition and diversity between bulk and rhizosphere soil, and that the structure of rhizosphere communities varied depending on the growth form of, and genetic variation within, the foundational plant S. alterniflora. Our results indicate that there are strong plant-microbial associations within a natural salt marsh, thereby contributing to a growing body of evidence for a relationship between plant genotypes and microbial communities from terrestrial ecosystems and suggest that principles of community genetics apply to this wetland type.