Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 179: 112920, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31706629

RESUMO

In the last two decades, plants became an interesting alternative for the production of recombinant proteins for human therapy and several antibodies expressed in plants have reached the clinical development stage. Plants are capable of post-translational modifications (PTMs) necessary for protein activity and pharmacokinetics, such as glycosylation. However, there are important kingdom-specific modifications that have to be considered when expressing recombinant proteins. Therefore, there is a need for efficient analytical methods for deep protein characterization starting from the expression platform design until the product approval to guarantee product authenticity, quality and efficacy. Literature lacks of reviews dealing with plant-derived proteins purification and characterization by chromatographic methods, thus the focus of the present review is on this topic for the most representative biotechnological drugs i.e. monoclonal antibodies (mAbs). In the first part, a comprehensive discussion of the methods applied in dowstream processes (extraction and clarification) and a detailed overview of the chromatographic techniques useful for the purification of plant-made mAbs are reported. Among purification techniques, Protein A affinity chromatography, ion-exchange chromatography, hydrophobic interaction chromatography, hydrophobic charge induction chromatography or mixed mode chromatography are described. In the second part, we will discuss analytical platforms based on chromatographic techniques (reverse phase, size exclusion chromatography, ion-exchange chromatography, hydrophilic interaction liquid chromatography) coupled with different detection systems (UV, Fluorescence, MS) used at protein, peptide and glycan level to characterize plant-made mAbs with their unique features.


Assuntos
Anticorpos Monoclonais/análise , Cromatografia/métodos , Planticorpos/análise , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Planticorpos/química , Planticorpos/isolamento & purificação , Processamento de Proteína Pós-Traducional
2.
Int J Mol Sci ; 19(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29286298

RESUMO

Colicins are natural non-antibiotic bacterial proteins with a narrow spectrum but an extremely high antibacterial activity. These proteins are promising food additives for the control of major pathogenic Shiga toxin-producing E. coli serovars in meats and produce. In the USA, colicins produced in edible plants such as spinach and leafy beets have already been accepted by the U. S. Food and Drug Administration (FDA) and U. S. Department of Agriculture (USDA) as food-processing antibacterials through the GRAS (generally recognized as safe) regulatory review process. Nicotiana benthamiana, a wild relative of tobacco, N. tabacum, has become the preferred production host plant for manufacturing recombinant proteins-including biopharmaceuticals, vaccines, and biomaterials-but the purification procedures that have been employed thus far are highly complex and costly. We describe a simple and inexpensive purification method based on specific acidic extraction followed by one chromatography step. The method provides for a high recovery yield of purified colicins, as well as a drastic reduction of nicotine to levels that could enable the final products to be used on food. The described purification method allows production of the colicin products at a commercially viable cost of goods and might be broadly applicable to other cost-sensitive proteins.


Assuntos
Antibacterianos/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Colicinas/isolamento & purificação , Aditivos Alimentares/isolamento & purificação , Carne/microbiologia , Nicotiana/genética , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Bovinos , Colicinas/biossíntese , Colicinas/química , Colicinas/farmacologia , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Aditivos Alimentares/farmacologia , Testes de Sensibilidade Microbiana , Nicotina/antagonistas & inibidores , Nicotina/biossíntese , Plantas Geneticamente Modificadas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Nicotiana/química , Nicotiana/metabolismo
3.
Biotechnol Adv ; 34(2): 77-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26626615

RESUMO

Recombinant mucosal antibodies represent attractive target molecules for the development of next generation biopharmaceuticals for passive immunization against various infectious diseases and treatment of patients suffering from mucosal antibody deficiencies. As these polymeric antibodies require complex post-translational modifications and correct subunit assembly, they are considered as difficult-to-produce recombinant proteins. Beside the traditional, mammalian-based production platforms, plants are emerging as alternative expression hosts for this type of complex macromolecule. Plant cells are able to produce high-quality mucosal antibodies as shown by the successful expression of the secretory immunoglobulins A (IgA) and M (IgM) in various antibody formats in different plant species including tobacco and its close relative Nicotiana benthamiana, maize, tomato and Arabidopsis thaliana. Importantly for biotherapeutic application, transgenic plants are capable of synthesizing functional IgA and IgM molecules with biological activity and safety profiles comparable with their native mammalian counterparts. This article reviews the structure and function of mucosal IgA and IgM antibodies and summarizes the current knowledge of their production and processing in plant host systems. Specific emphasis is given to consideration of intracellular transport processes as these affect assembly of the mature immunoglobulins, their secretion rates, proteolysis/degradation and glycosylation patterns. Furthermore, this review provides an outline of glycoengineering efforts that have been undertaken so far to produce antibodies with homogenous human-like glycan decoration. We believe that the continued development of our understanding of the plant cellular machinery related to the heterologous expression of immunoglobulins will further improve the production levels, quality and control of post-translational modifications that are 'human-like' from plant systems and enhance the prospects for the regulatory approval of such molecules leading to the commercial exploitation of plant-derived mucosal antibodies.


Assuntos
Anticorpos , Plantas Geneticamente Modificadas , Engenharia de Proteínas/métodos , Proteínas Recombinantes , Anticorpos/química , Anticorpos/genética , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Arabidopsis , Humanos , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina M , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana , Zea mays
4.
Proc Natl Acad Sci U S A ; 112(40): E5454-60, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26351689

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway.


Assuntos
Colicinas/metabolismo , Colicinas/farmacologia , Escherichia coli O157/efeitos dos fármacos , Plantas Comestíveis/metabolismo , Sequência de Aminoácidos , Animais , Beta vulgaris/genética , Beta vulgaris/metabolismo , Colicinas/genética , Eletroforese em Gel de Poliacrilamida , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Peixes , Microbiologia de Alimentos , Carne/microbiologia , Dados de Sequência Molecular , Plantas Comestíveis/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Suínos , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA