Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329612

RESUMO

The haloarchaeon Haloferax mediterranei synthesizes poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of H. mediterranei makes the use of waste as a carbon source for cellular growth and PHA synthesis possible. In this work, cellular growth and the production and characterization of PHBV using two different types of confectionery waste were analyzed and compared with cellular growth and PHBV synthesis in a standard culture media with glucose of analytical grade as a carbon source. The PHBV granules produced were analyzed by TEM and the biopolymer was isolated and characterized by GC-MS, FTIR NMR, and DSC. The results reveal that H. mediterranei can use these two residues (R1 and R2) for pure PHBV production, achieving 0.256 and 0.983 g PHBV/L, respectively, which are among the highest yields so far described using for the first-time waste from the candy industry. Thus, a circular economy-based process has been designed to optimize the upscaling of PHBV production by using haloarchaea as cell factories and valorizing confectionery waste.

2.
J Environ Manage ; 356: 120522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493645

RESUMO

In the context of a circular bio-based economy, more public attention has been paid to the environmental sustainability of biodegradable bio-based plastics, particularly plastics produced using emerging biotechnologies, e.g. poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. However, this has not been thoroughly investigated in the literature. Therefore, this study aimed to address three aspects regarding the environmental impact of PHBV-based plastic: (i) the potential environmental benefits of scaling up pellet production from pilot to industrial scale and the environmental hotspots at each scale, (ii) the most favourable end-of-life (EOL) scenario for PHBV, and (iii) the environmental performance of PHBV compared to benchmark materials considering both the pellet production and EOL stages. Life cycle assessment (LCA) was implemented using Cumulative Exergy Extraction from the Natural Environment (CEENE) and Environmental Footprint (EF) methods. The results show that, firstly, when upscaling the PHBV pellet production from pilot to industrial scale, a significant environmental benefit can be achieved by reducing electricity and nutrient usage, together with the implementation of better practices such as recycling effluent for diluting feedstock. Moreover, from the circularity perspective, mechanical recycling might be the most favourable EOL scenario for short-life PHBV-based products, using the carbon neutrality approach, as the material remains recycled and hence environmental credits are achieved by substituting recyclates for virgin raw materials. Lastly, PHBV can be environmentally beneficial equal to or even to some extent greater than common bio- and fossil-based plastics produced with well-established technologies. Besides methodological choices, feedstock source and technology specifications (e.g. pure or mixed microbial cultures) were also identified as significant factors contributing to the variations in LCA of (bio)plastics; therefore, transparency in reporting these factors, along with consistency in implementing the methodologies, is crucial for conducting a meaningful comparative LCA.


Assuntos
Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres , Poli-Hidroxibutiratos , Biotecnologia
3.
Polymers (Basel) ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139946

RESUMO

Biodegradable thin films based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(caprolactone diol) (PCL-diol) blend were developed using the solution casting method. PHBV is biodegradable, biocompatible, and produced naturally by bacterial activity, but its use is restricted by high crystallinity and low resistance to thermal degradation with melting temperatures close to degradation thus narrowing the processing window. Solution casting was chosen as a cost-effective method reducing energy consumption and avoiding thermal degradation during processing. The increase in PCL-diol in blend composition (40-60 wt%) enhances the film-forming ability of PHBV and the wettability along with the decrease in the roughness of the resulting materials as revealed by contact angle measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Optimal composition in terms of filmogenity and surface structure has been achieved by the addition of PCL-diol in the amount of 60 wt%. FTIR confirmed the expected chemical structures with no evidence of chemical interactions between the two polymers.

4.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4663-4681, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38013191

RESUMO

The present study aimed to unravel the carbon metabolism pathway of Acinetobacter sp. TAC-1, a heterotrophic nitrification-aerobic denitrification (HN-AD) strain that utilizes poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source. Sodium acetate was employed as a control to assess the gene expression of carbon metabolic pathways in the TAC-1 strain. The results of genome sequencing demonstrated that the TAC-1 strain possessed various genes encoding carbon metabolic enzymes, such as gltA, icd, sucAB, acs, and pckA. KEGG pathway database analysis further verified the presence of carbon metabolism pathways, including the glycolytic pathway (EMP), pentose phosphate pathway (PPP), glyoxylate cycle (GAC), and tricarboxylic acid (TCA) cycle in the TAC-1 strain. The differential expression of metabolites derived from distinct carbon sources provided further evidence that the carbon metabolism pathway of TAC-1 utilizing PHBV follows the sequential process of PHBV (via the PPP pathway)→gluconate (via the EMP pathway)→acetyl-CoA (entering the TCA cycle)→CO2+H2O (generating electron donors and releasing energy). This study is expected to furnish a theoretical foundation for the advancement and implementation of novel denitrification processes based on HN-AD and solid carbon sources.


Assuntos
Carbono , Poliésteres , Ácido 3-Hidroxibutírico , Carbono/metabolismo , Hidroxibutiratos , Redes e Vias Metabólicas
5.
ACS Appl Mater Interfaces ; 15(29): 35507-35515, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37455364

RESUMO

Atmospheric particulate matter (PMs) pollution has raised increasing public concerns, especially with the outbreak of COVID-19. The preparation of high-performance membranes for air filtration is of great significance. Herein, the biosynthetic polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was adopted to create a hierarchical structure and biodegradable nonwoven membrane for PMs filtration through a facile directly electrospinning method. The as-prepared membranes with hierarchical structure contain abundant nanowires (5-100 nm) and microfibers (2-5 µm) with different diameter (1000-5000 nm). We have achieved realization of formation mechanisms of such bimodal micro- and nanofibers, which stem from the branching of microfiber at early stage of electrospinning. The PHBV membranes exhibit a very high PM0.3 removal efficiency of 99.999% and PM2.5 removal efficiency of 100% with 0.077% standard atmospheric pressure in the air flow speed of 5.3 cm/s. More importantly, the PHBV membranes can be completely disintegrated within 1 week under composted conditions, indicating the great biodegradability of PHBV membranes. Our work provides insights for the development of biodegradable, high performance air filters for pollutants, molds, bacteria, and viruses.


Assuntos
COVID-19 , Nanofibras , Humanos , Nanofibras/química , Poliésteres/química , Polímeros , Filtração/métodos
6.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511432

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable and biocompatible biopolymer that has gained popularity in the field of biomedicine. This review provides an overview of recent advances and potential applications of PHBV, with special emphasis on drug encapsulation and scaffold construction. PHBV has shown to be a versatile platform for drug delivery, offering controlled release, enhanced therapeutic efficacy, and reduced side effects. The encapsulation of various drugs, such as anticancer agents, antibiotics, and anti-inflammatory drugs, in PHBV nanoparticles or microspheres has been extensively investigated, demonstrating enhanced drug stability, prolonged release kinetics, and increased bioavailability. Additionally, PHBV has been used as a scaffold material for tissue engineering applications, such as bone, cartilage, and skin regeneration. The incorporation of PHBV into scaffolds has been shown to improve mechanical properties, biocompatibility, and cellular interactions, making them suitable for tissue engineering constructs. This review highlights the potential of PHBV in drug encapsulation and scaffold fabrication, showing its promising role in advancing biomedical applications.


Assuntos
Poliésteres , Alicerces Teciduais , Preparações Farmacêuticas , Engenharia Tecidual
7.
Polymers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112068

RESUMO

In this study, the structural and property changes induced in the highly ordered structure of preoriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV films containing the ß-form during annealing were investigated. The transformation of the ß-form was investigated by means of in situ wide-angle X-ray diffraction (WAXD) using synchrotron X-rays. The comparison of PHBV films with the ß-form before and after annealing was performed using small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The evolution mechanism of ß-crystal transformation was elucidated. It was revealed that most of the highly oriented ß-form directly transforms into the highly oriented α-form, and there might be two kinds of transformations: (1) The ß-crystalline bundles may be transformed one by one rather than one part by one part during annealing before a certain annealing time. (2) The ß-crystalline bundles crack or the molecular chains of the ß-form are separated from the lateral side after annealing after a certain annealing time. A model to describe the microstructural evolution of the ordered structure during annealing was established based on the results obtained.

8.
J Biotechnol ; 361: 30-40, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36427593

RESUMO

For tissue engineering applications, cell adhesion and proliferation are crucial factors, and blending polymers is one of the most effective ways to create a biocompatible scaffold with desired properties. In order to create new potential porous, biodegradable scaffolds using salt leaching technique, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were blended in different ratios. SEM, BET, FTIR, and water contact angle measurements were used to analyze the scaffolds' porous surface, surface area, and roughness, chemical interaction, and hydrophilicity. Additionally, a hemolysis assay revealed that the mixtures were hemocompatible and had no impact on red blood cells. Different cells- Vero, Hela and MDBK cell lines cultured on the porous mats of these biopolymeric scaffolds exhibited significant increase in cell viability and attachment over time. The overall finding was that blended scaffolds exhibited reduced crystallinity, diverse porosity, higher surface area and hydrophilicity, and better cell viability, proliferation and adhesion. Our findings imply that a blended scaffold could be more suitable for use in tissue engineering applications.


Assuntos
Poli-Hidroxialcanoatos , Alicerces Teciduais , Alicerces Teciduais/química , Poliésteres/farmacologia , Poliésteres/química , Sobrevivência Celular , Engenharia Tecidual/métodos , Proliferação de Células , Materiais Biocompatíveis/química
9.
Polymers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236088

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with various 3-hydroxyvalerate (3HV) contents biosynthesized by mixed microbial consortia (MMC) fed fermented dairy manure at the large-scale level was assessed over a 3-month period. The thermal, mechanical, and rheological behavior and the chemical structure of the extracted PHBV biopolymers were studied. The recovery of crude PHBV extracted in a large Soxhlet extractor with CHCl3 for 24 h ranged between 20.6% to 31.8% and purified to yield between 8.9% to 26.9% all based on original biomass. 13C-NMR spectroscopy revealed that the extracted PHBVs have a random distribution of 3HV and 3-hydroxybutyrate (3HB) units and with 3HV content between 16% and 24%. The glass transition temperature (Tg) of the extracted PHBVs varied between -0.7 and -7.4 °C. Some of the extracted PHBVs showed two melting temperatures (Tm) which the lower Tm1 ranged between 126.1 °C and 159.7 °C and the higher Tm2 varied between 152.1 °C and 170.1 °C. The weight average molar mass of extracted PHBVs was wide ranging from 6.49 × 105 g·mol-1 to 28.0 × 105 g·mol-1. The flexural and tensile properties were also determined. The extracted polymers showed a reverse relationship between the 3HV content and Young's modulus, tensile strength, flexural modulus, and flexural strength properties.

10.
Int J Biol Macromol ; 193(Pt A): 956-964, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34751142

RESUMO

In this study, a phaCR gene encoding PHA synthase was identified in Rhodoligotrophos defluvii which was adjacent to ß-ketothiolase encoded by phaAR gene and acetoacetyl-CoA reductase encoded by phaBR gene. Amino acid comparison of PhaCR showed the highest homology of 65.98% with PhaC of R. appendicifer, while its homology with typical class I PHA synthase in Cupriavidus necator was only 42.54%. PHA synthesis genes were then transformed into E. coli harboring phaCABR and phaCRABC which were cultured with 15 g/L glucose respectively, and 20.46 wt% and 16.95 wt% of CDW for poly(3-hydroxybutyrate) (PHB) were accumulated respectively. To further explore the effect of substrate specificity for PHA production, the ptsG gene was then deleted and 15 g/L glucose and 1.5 g/L propionate were co-employed as carbon sources, which enabled the synthesis of poly(3HB-co-3HV) copolymer. As a result, poly(3HB-co-3HV) was accumulated up to 24.74 wt% of CDW, and the highest content of 3-hydroxyvalerate (3HV) was 10.86 mol%. The Td5 was 260 °C, which implied that it possessed good thermal stability, and the Mw of GPC in recombinant strains were between 22 and 26 × 104 g/mol, and the highest PDI was 3.771. The structure of poly (3HB-co-3HV) copolymer was determined through 1H NMR analysis.


Assuntos
Escherichia coli/genética , Engenharia Metabólica/métodos , Poliésteres/metabolismo
11.
Huan Jing Ke Xue ; 40(9): 4143-4151, 2019 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854879

RESUMO

Two types of biodegradable polymers, polycaprolactone (PCL) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), were used as a denitrification slow-release carbon source and a microbial carrier. By comprehensively comparing their performances in denitrification, carbon release, surface morphology, and material composition as well as their microbial community characteristics, the PHBV was determined as the better performer. It had a shorter denitrification start time, a higher denitrification rate, a lower residual organic matter concentration, and a more stable and sustained denitrification performance than PCL. This is because its surface was rough and contained large amounts of hydrophilic groups such as C-O and C=O, which is easily attached and degraded by microorganisms. As a result, the microorganisms on its surface were diverse. The dominant ones were identified with heterotrophic denitrification potentials, such as Thiothrix, Pseudomonas, Zoogloea, Flavobacterium, and Dechloromonas. Therefore, PHBV is suitable as a carbon source medium for tertiary nitrogen removal.

12.
J Mech Behav Biomed Mater ; 96: 1-8, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31015108

RESUMO

Macroscopic mechanical properties of porous PHBV bone TE scaffolds have been well studied. However, their mechanical behavior at microscopic level has yet to be explored. In this study, the micro-mechanical behavior of a PHBV bone scaffold under compression was investigated using a numerical method that combines micro-computed tomography (µ-CT) and finite element analysis (FEA). It was found that the use of a linear-elastic model resulted in an overestimation of the stiffness of the scaffold, whereas a more realistic estimation of the scaffold's deformation behavior was obtained by utilizing a bilinear material model. The onset of plastic deformation occurred in the very early stage of loading resulting in significantly reduced stiffness of the scaffold. The non-uniform and arbitrary microstructure of the scaffold led to a heterogeneous stress distribution within the porous construct, which was subjected to a mixture of compressive and tensile stresses. Nevertheless, the resultant stress contours showed that the scaffold experienced primarily elastic deformation when it was loaded up to 0.003 strain, while localized plastic deformation occurred at sharp corners and necked regions of the micro-struts. The scaffold expanded slightly in the horizontal direction as it was compressed and the change in geometries of pores within the scaffold was insignificant. The proposed method provides a valuable tool to study the localized mechanical behavior of bone scaffolds in micrometer scale with arbitrary porous architecture. This approach could prove highly useful for guiding the fabrication of scaffolds that have anatomy specific mechanical properties and porous architecture.


Assuntos
Força Compressiva , Análise de Elementos Finitos , Teste de Materiais , Poliésteres/análise , Alicerces Teciduais , Poliésteres/química , Porosidade , Estresse Mecânico , Microtomografia por Raio-X
13.
Polymers (Basel) ; 11(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30960549

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising bio-based and biodegradable thermoplastic with restricted industrial applications due to its brittleness and poor processability. Natural rubber (NR) has been used as a toughening agent, but further physical improvements are desired. In this study, rubber toughening efficiency was significantly improved through the synergistic use of a trifunctional acrylic coagent and an organic peroxide during reactive extrusion of PHBV and NR. The rheological, crystallization, thermal, morphological, and mechanical properties of PHBV/NR blends with 15% rubber loading were characterized. The peroxide and coagent synergistically crosslinked the rubber phase and grafted PHBV onto rubber backbones, leading to enhanced rubber modulus and cohesive strength as well as improved PHBV⁻rubber compatibility and blend homogeneity. Simultaneously, the peroxide⁻coagent treatment decreased PHBV crystallinity and crystal size and depressed peroxy-radical-caused PHBV degradation. The new PHBV/NR blends had a broader processing window, 75% better toughness (based on the notched impact strength data), and 100% better ductility (based on the tensile elongation data) than pristine PHBV. This new rubber-toughened PHBV material has balanced mechanical performance comparable to that of conventional thermoplastics and is suitable for a wide range of plastic applications.

14.
Nanomaterials (Basel) ; 9(3)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832425

RESUMO

The main objective of this work was to develop bio-based and biodegradable bilayer systems with antioxidant properties. The outer layer was based on a compression-molded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based material while antioxidant electrospun fibers based on poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends formed the inner active layer. In particular, PLA was blended with 25 wt% of PHB to increase the crystallinity of the fibers and reduce the fiber defects. Moreover, in order to increase the stretchability and to facilitate the electrospinning process of the fiber mats, 15 wt% of oligomeric lactic acid was added as a plasticizer. This system was further loaded with 1 wt% and 3 wt% of catechin, a natural flavonoid with antioxidant activity, to obtain antioxidant-active mats for active food packaging applications. The obtained bilayer systems showed effective catechin release capacity into a fatty food simulant. While the released catechin showed antioxidant effectiveness. Finally, bilayer films showed appropriate disintegration in compost conditions in around three months. Thus, showing their potential as bio-based and biodegradable active packaging for fatty food products.

15.
ACS Appl Bio Mater ; 2(11): 4922-4931, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021492

RESUMO

Piezoelectric materials strive to articulate smart materials and transduce electric fields by applying mechanical pressure and vice versa. This study demarcates augmented cartilage regeneration from the praxis of the smart material intervention that denotes the method of the utilized piezoelectric mechanism. The smart piezoelectric nanohybrid is developed from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and barium titanate (BaTiO3). Further, the electrospinning technique is adopted for the scaffolding to mimic the structure of natural cartilage. The scaffold with 20% BaTiO3 shows enhanced mechanical properties and a piezoelectric coefficient (1.4 pC/N) similar to native tissue. Interestingly, the corona poled (electrically polarized) scaffolds demonstrated better cellular activity than unpoled. Human mesenchymal stem-cell-derived chondrocytes are utilized for in vitro studies. The polarized scaffolds highly promote the cell attachment, proliferation, and collagen II gene expression against control (pure PHBV) and unpolarised scaffolds; the effect was quite dominant even in high-piezoelectric-coefficient scaffolds. Therefore, the electric-field-originated scaffolds show the potential effect on cartilage regeneration without the addition of any stimulating molecules.

16.
J Cell Physiol ; 234(7): 11537-11544, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30478907

RESUMO

Cocell polymers can be the best implants for replacing bone defects in patients. The pluripotent stem cells produced from the patient and the nanofibrous polymeric scaffold that can be completely degraded in the body and its produced monomers could be also usable are the best options for this implant. In this study, electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated and characterized and then osteogenic differentiation of the human-induced pluripotent stem cells (iPSCs) was investigated while cultured on PHBV scaffold. MTT results showed that cultured iPSCs on PHBV proliferation were increased compared to those cultured on tissue culture polystyrene (TCPS) as the control. Alkaline phosphatase (ALP) activity and calcium content were also significantly increased in iPSCs cultured on PHBV compared to the cultured on TCPS under osteogenic medium. Gene expression evaluation demonstrated that Runx2, collagen type I, ALP, osteonectin, and osteocalcin were upregulated in iPSCs cultured on PHBV scaffold in comparison with those cultured on TCPS for 2 weeks. Western blot analysis have shown that osteocalcin and osteopontin expression as two major osteogenic markers were increased in iPSCs cultured on PHBV scaffold. According to the results, nanofiber-based PHBV has a promising potential to increase osteogenic differentiation of the stem cells and iPSCs-PHBV as a cell-co-polymer construct demonstrated that has a great efficiency for use as a bone tissue engineered bioimplant.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Técnicas de Cultura de Células , Matriz Extracelular , Humanos , Osteogênese/fisiologia , Células-Tronco Pluripotentes/fisiologia , Alicerces Teciduais
17.
J Mech Behav Biomed Mater ; 84: 151-160, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778988

RESUMO

Selective Laser Sintering (SLS) is a promising technique for manufacturing bio-polymer scaffolds used in bone tissue engineering applications. Conventional scaffolds made using SLS have complex engineered architectures to introduce adequate porosity and pore interconnectivity. This study presents an alternative approach to manufacture scaffolds via SLS without using pre-designed architectures. In this work, a SLS process was developed for fabricating interconnected porous biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with large surface areas and relative porosities of up to 80%. These characteristics provide great potential to enhance cell attachment inside the scaffolds. The scaffold microstructure was dependent on the laser energy density (LED) during the SLS process. An increase in LED led to scaffolds with higher relative densities, stronger inter-layer connections, and a reduced quantity of residual powder trapped inside the pores. An increase in relative density from 20.3% to 41.1% resulted in a higher maximum compressive modulus and strength of 36.4 MPa and 6.7 MPa, respectively.


Assuntos
Lasers , Fenômenos Mecânicos , Poliésteres/síntese química , Técnicas de Química Sintética , Força Compressiva , Teste de Materiais , Poliésteres/química , Porosidade , Engenharia Tecidual , Alicerces Teciduais/química
18.
Polymers (Basel) ; 9(5)2017 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30970854

RESUMO

The poor bioactivity and mechanical properties have restricted its biomedical application, although poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) had good biocompatibility and biodegradability. In this study, calcium silicate (CS) was incorporated into PHBV for improving its bioactivity and mechanical properties, and the porous PHBV/CS composite scaffolds were fabricated via selective laser sintering (SLS). Simulated body fluid (SBF) immersion tests indicated the composite scaffolds had good apatite-forming ability, which could be mainly attributed to the electrostatic attraction of negatively charged silanol groups derived from CS degradation to positively charged calcium ions in SBF. Moreover, the compressive properties of the composite scaffolds increased at first, and then decreased with increasing the CS content, which was ascribed to the fact that CS of a proper content could homogeneously disperse in PHBV matrix, while excessive CS would form continuous phase. The compressive strength and modulus of composite scaffolds with optimal CS content of 10 wt % were 3.55 MPa and 36.54 MPa, respectively, which were increased by 41.43% and 28.61%, respectively, as compared with PHBV scaffolds. Additionally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated MG63 cells had a higher proliferation rate on PHBV/CS composite scaffolds than that on PHBV. Alkaline phosphatase (ALP) staining assay demonstrated the incorporation of CS significantly promoted osteogenic differentiation of MG63 cells on the scaffolds. These results suggest that the PHBV/CS composite scaffolds have the potential in serving as a substitute in bone tissue engineering.

19.
J Biotechnol ; 195: 82-8, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25541463

RESUMO

Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with Ralstonia eutropha relies on the addition of propionate during fermentation, and propionate consumption is one of the major factors affecting the cost of PHBV production. In this study, 7 strains were obtained by genetic manipulating the methylcitric acid cycle and the methylmalonyl-CoA pathway in R. eutropha. Disruption of prpC1 and prpC2 genes did not affect cell growth and PHBV accumulation. All 7 strains were able to accumulation high amounts of PHBVs with 3HV fractions of 0.41-29.1 mol% during cultivation in flasks. Fermentation in 7.5-L fermenter showed that genetically engineered Rem-8 was able to yield biomass of 132.8 CDWg/L, of which 68.6% were PHBV with 3HV fraction of 26.0 mol% in the biopolymer, indicating promising potentials of commercialization in the future.


Assuntos
Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Redes e Vias Metabólicas , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA