Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337638

RESUMO

A new green water treatment agent, a poly(aspartic acid)-modified polymer (PASP/5-AVA), was synthesized using polysuccinimide and 5-aminovaleric acid (5-AVA) in a hybrid system. The structure was characterized, and the scale and corrosion inhibition performance were carried out with standard static scale inhibition and electrochemical methods, respectively. The mechanism was explored using XRD, XPS, SEM, and quantum chemistry calculations. The results indicated that PASP/5-AVA exhibited better scale and corrosion inhibition performance than PASP and maintained efficacy and thermal stability of the scale inhibition effect for a long time. Mechanistic studies indicated that PASP/5-AVA interferes with the normal generation of CaCO3 and CaSO4 scales through lattice distortion and dispersion, respectively; the combined effect of an alkaline environment and terminal electron-withdrawing -COOH groups can induce the stable C- ionic state formation in -CH2- of the extended side chain, thus enhancing its chelating ability for Ca2+ ions. At the same time, the extension of the side chain length also enhances the adsorption ability of the agent on the metal surface, forming a thick film and delaying the corrosion of the metal surface. This study provides the necessary theoretical reference for the design of green scale and corrosion agents.


Assuntos
Peptídeos , Corrosão , Peptídeos/química , Peptídeos/síntese química , Química Verde/métodos , Purificação da Água/métodos , Polímeros/química , Polímeros/síntese química , Adsorção
2.
J Environ Manage ; 366: 121825, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996604

RESUMO

Chelator-assisted phytoremediation is an efficacious method for promoting the removal efficiency of heavy metals (HMs). The effects of N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) and polyaspartic acid (PASP) on Cd uptake and pyrene removal by Solanum nigrum L. (S. nigrum) were compared in this study. Using GLDA or PASP, the removal efficiency of pyrene was over 98%. And PASP observably raised the accumulation and transport of Cd by S. nigrum compared with GLDA. Meanwhile, both GLDA and PASP markedly increased soil dehydrogenase activities (DHA) and microbial activities. DHA and microbial activities in the PASP treatment group were 1.05 and 1.06 folds of those in the GLDA treatment group, respectively. Transcriptome analysis revealed that 1206 and 1684 differentially expressed genes (DEGs) were recognized in the GLDA treatment group and PASP treatment group, respectively. Most of the DEGs found in the PASP treatment group were involved in the metabolism of carbohydrates, the biosynthesis of brassinosteroid and flavonoid, and they were up-regulated. The DEGs related to Cd transport were screened, and ABCG3, ABCC4, ABCG9 and Nramp5 were found to be relevant with the reduction of Cd stress in S. nigrum by PASP. Furthermore, with PASP treated, transcription factors (TFs) related to HMs such as WRKY, bHLH, AP2/ERF, MYB were down-regulated, while more MYB and bZIP TFs were up-regulated. These TFs associated with plant stress resistance would work together to induce oxidative stress. The above results indicated that PASP was more conducive for phytoremediation of Cd-pyrene co-contaminated soil than GLDA.


Assuntos
Biodegradação Ambiental , Cádmio , Pirenos , Poluentes do Solo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Pirenos/metabolismo , Solo/química , Peptídeos/metabolismo , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo
3.
Colloids Surf B Biointerfaces ; 241: 114055, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936034

RESUMO

Cryopreservation is highly desired for long-term maintenance of the viability of living biosamples, while effective cell cryopreservation still relies heavily on the addition of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS). However, the intrinsic toxicity of DMSO is still a bottleneck, which could not only cause the clinical side effect but also induce cell genetic variants. In the meantime, the addition of FBS may bring potentially the risk of pathogenic microorganism contamination. The liquid marbles (LMs), a novel biotechnology tool for cell cryopreservation, which not only have a small volume system that facilitated recovery, but the hydrophobic shell also resisted the harm to cells caused by adverse environments. Previous LM-based cell cryopreservation relied heavily on the addition of FBS. In this work, we introduced acidic polyaspartic acid and polyglutamic acid as cryoprotectants to construct LM systems. LMs could burst in an instant to facilitate and achieve ultrarapid recovery process, and the hydrophilic carboxyl groups of the cryoprotectants could form hydrogen bonds with water molecules and further inhibit ice growth/formation to protect cells from cryoinjuries. The L929 cells could be well cryopreserved by acidic polyamino acid-based LMs. This new biotechnology platform is expected to be widely used for cell cryopreservation, which has the potential to propel LMs for the preservation of various functional cells in the future.


Assuntos
Sobrevivência Celular , Criopreservação , Crioprotetores , Criopreservação/métodos , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Crioprotetores/química , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia
4.
Int J Pharm ; 661: 124350, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885780

RESUMO

It is crucial to develop non-viral gene vectors that can efficiently and safely transfect plasmid DNA into cells. Low transfection efficiency and high cytotoxicity of cationic polymers hinder their application as gene carriers. Modification of cationic polymers has emerged as an attractive strategy for efficient and safe nucleic acids delivery. In this study, a simple and rapid method is developed to synthesize a series of multifunctional polymers by utilizing biodegradable polyaspartic acid as the backbone and modifying it with three modules. This one-component polymer possesses capabilities for nucleic acid condensation, cellular uptake, and endosomal escape. Polymers containing imidazole, triazole, or pyridine group exhibited promising transfection activity. Substituted with dodecylamine or 2-hexyldecan-1-amine enhance cellular uptake and subsequent transfection. Furthermore, the influence of ionizable amine side chains on gene delivery is investigated. Two optimal polymers, combined with the avian encephalomyelitis virus (AEV) plasmid vaccine, induced robust specific antibody responses and cellular immune responses in mice and chickens. Through module-combination design and screening of polyaspartamide polymers, this study presents a paradigm for the development of gene delivery vectors.


Assuntos
DNA , Técnicas de Transferência de Genes , Peptídeos , Plasmídeos , Polímeros , Transfecção , Animais , Peptídeos/química , Polímeros/química , Camundongos , Humanos , DNA/administração & dosagem , Transfecção/métodos , Galinhas , Feminino , Camundongos Endogâmicos BALB C , Vacinas de DNA/administração & dosagem , Vetores Genéticos/administração & dosagem
5.
Sci Rep ; 14(1): 11414, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762568

RESUMO

Using polyaspartic acid (PAsp) and bentonite (BT) as the main raw materials, a new type of degradable soil water retaining agent (PAsp-AA/BT) was synthesized by microwave radiation. The optimum synthesis conditions and comprehensive properties of PAsp-AA/BT were discussed and the structure and surface characteristics of PAspsp-AA/BT were characterized by FTIR, SEM, XRD and TGA in the paper. The results showed that the optimum synthesis conditions of PAsp-AA/BT were as follows: the dosages of polyaspartic acid (PAsp), bentonite (BT), initiator potassium persulfate, crosslinking agent N,N'-methylene bisacrylamide was 5, 3, 0.3, 0.03%, respectively, the neutralization degree of acrylic acid was 75%, and the microwave power was 490W. Under this condition, the absorption ratio of the synthesized PAspsp-AA/BT in deionized water and 0.9% NaCl solution was 953 and 164 g/g, respectively. The synthesized PAsp-AA/BT had a high water absorption rate, good water retention and repeated water absorption, and the degradation rate in soil within 30 days reached 32.75%, with good degradation effect. The analysis of SEM, FT-IR, XRD and TGA showed that: the surface of PAsp-AA/BT was rough and had obvious pore structure, which was conducive to the diffusion of water molecules; polyaspartic acid, bentonite and acrylic acid were polymerized; the cross-linking structure was formed between polyaspartic acid, bentonite and acrylic acid; the product of PASP-AA/BT had good thermal stability. This study provides a new soil water retaining agent, which is helpful for the better development of soil water retaining agent research.

6.
J Hazard Mater ; 473: 134689, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788583

RESUMO

The arsenopyrite activated by copper ions have similar flotation properties to chalcopyrite. Polyaspartic acid (PASP) and calcium oxide (CaO) using as combination depressants for the selective separation of copper-activated arsenopyrite and chalcopyrite were carried out by micro-flotation experiments, contact angle measurements, surface adsorption capacity tests, zeta potential measurements, X-ray photoelectron spectroscopy (XPS) analyses, inductively coupled plasma-optical emission spectrometer (ICP-OES) tests and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses, and its depression mechanism was investigated. The results of flotation experiments showed that the recovery of arsenopyrite after addition of the depressants reached only 7.80 %, while the recovery of chalcopyrite reached 94.02 %. The results of contact angles, adsorption capacity tests and zeta potential measurements showed that the PASP-CaO can selectively enhance the hydrophilicity of arsenopyrite surface, but has little effect on the chalcopyrite. XPS analyses and ICP-OES tests further verified that the depressants first eliminated the activation of copper ions and then selectively adsorbed on the surface of arsenopyrite. ToF-SIMS analyses showed that the PASP-CaO would achieve selective depression of arsenopyrite in the form of PASP, PASP-Ca complexes and Ca(OH)+, respectively. Finally, the mechanism diagram of PASP-CaO selectively depressing arsenopyrite was derived. These results will provide an excellent theoretical reference for the flotation separation of copper arsenic sulfide ore.

7.
Macromol Biosci ; 24(7): e2400047, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38589022

RESUMO

Polyaspartic acid derivatives are a well-known kind of polypeptide with good biocompatibility and biodegradability, and thus have been widely used as biomedical materials, including drug-loaded nano-scale micelles or macroscopic hydrogels. In this work, for the first time, monodisperse polyaspartic acid derivative microspheres with diameter ranging from 120 to 350 µm for potential tumor embolization therapy are successfully prepared by single emulsion droplet microfluidic technique. The obtained microsphere shows fast cationic anticancer drug doxorubicin hydrochloride loading kinetics with high loading capacity, which is much better than those of the commercial ones. Additionally, drug release behaviors of the drug-loaded microspheres with different diameters in different media are also studied and discussed in detail. These results provide some new insights for the preparation and potential application of polyaspartic acid derivative-based monodisperse microspheres, especially for their potential application as embolic agent.


Assuntos
Doxorrubicina , Embolização Terapêutica , Microesferas , Peptídeos , Doxorrubicina/farmacologia , Doxorrubicina/química , Peptídeos/química , Embolização Terapêutica/métodos , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Tamanho da Partícula , Portadores de Fármacos/química
8.
Gels ; 10(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534588

RESUMO

Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10% vs. 20%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth.

9.
BMC Biotechnol ; 23(1): 47, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907900

RESUMO

γ-polyglutamic acid (γ-PGA) is a biomarker that can be directly obtained by microbial fermentation. Poly(amino acid) superabsorbent polymers (SAPs) were prepared with purified γ-PGA as raw material and ethylene glycol diglycidyl ether (EGDGE) as a cross-linking agent. However, γ-PGA fermentation broth has a high viscosity, requires complex extraction and separation processes, and entails high energy consumption, resulting in the high cost of poly (amino acid) SAPs. Therefore, the coupling fermentation processes of glutamate polyglutamic acid, the process of using glutamate fermentation broth instead of pure glutamate powder for fermentation, and the process of treating the fermentation broth under conditions of centrifugation, UV irradiation, and high temperature, were studied. The results showed that the yield of γ-PGA after centrifugation decreased by 5%, but it did not affect the synthesis of hydrogels, and the addition of γ-PGA fermentation broth had a significant effect on the performance of γ-PGA-co-PASP SAPs. The proposed method not only helps avoid the separation of complex γ-PGA fermentation broth and reduces the cost, but it also helps improve the performance of the super-absorbent resin, which has great application potential.


Assuntos
Ácido Glutâmico , Ácido Poliglutâmico , Ácido Poliglutâmico/química , Fermentação
10.
Nano Lett ; 23(21): 9760-9768, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37669509

RESUMO

Collagen biomineralization is fundamental to hard tissue assembly. While studied extensively, collagen mineralization processes are not fully understood, with the majority of theories derived from electron microscopy (EM) under static, dehydrated, or frozen conditions, unlike the liquid phase environment where mineralization occurs. Herein, novel liquid transmission EM (TEM) strategies are presented, in which collagen mineralization was explored in liquid for the first time via TEM. Custom thin-film enclosures were employed to visualize the mineralization of reconstituted collagen fibrils in a calcium phosphate and polyaspartic acid solution to promote intrafibrillar mineralization. TEM highlighted that at early time points precursor mineral particles attached to collagen and progressed to crystalline mineral platelets aligned with fibrils at later time points. This aligns with observations from other techniques and validates the liquid TEM approach. This work provides a new liquid imaging approach for exploring collagen biomineralization, advancing toward understanding disease pathogenesis and remineralization strategies for hard tissues.


Assuntos
Biomineralização , Colágeno , Colágeno/química , Matriz Extracelular , Microscopia Eletrônica de Transmissão , Minerais
11.
J Hazard Mater ; 460: 132433, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659238

RESUMO

Attention has been long focused on enhancing permanganate (Mn(VII)) oxidation capacity for eliminating organic contaminants via generating active manganese intermediates (AMnIs). Nevertheless, limited consideration has been given to the unnecessary consumption of Mn(VII) due to the spontaneous disproportionation of AMnIs during their formation. In this work, we innovatively introduced green polyaspartic acid (PASP) as both reducing and chelating agents to activate Mn(VII) to enhance the oxidation capacity and utilization efficiency of Mn(VII). Multiple lines of evidence suggest that Mn(III), existing as Mn(III)-PASP complex, was generated and dominated the degradation of bisphenol A (BPA) in the Mn(VII)/PASP system. The stabilized Mn(III) species enabled Mn(VII) utilization efficiency in the Mn(VII)/PASP system to be higher than that in Mn(VII) alone. Moreover, the electrophilic Mn(III) species was verified to mainly attack the inclusive benzene ring and isopropyl group to realize BPA oxidation and its toxicity reduction in the Mn(VII)/PASP system. In addition, the Mn(VII)/PASP system showed the potential for selectively oxidizing organic contaminants bearing phenol and aniline moieties in real waters without interference from most of coexisting water matrices. This work brightens an overlooked route to both high oxidation capacity and efficient Mn(VII) utilization in the Mn(VII)-based oxidation processes.

12.
ACS Appl Mater Interfaces ; 15(31): 38068-38079, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503748

RESUMO

Interfacial modification is a promising strategy to fabricate highly efficient perovskite solar cells (PSCs). Nevertheless, research studies about optimization for the performance of Dion-Jacobson (DJ)-phase quasi-2D PSCs by underlying surface modification are rarely reported. The relevant influence of interfacial modification on defect regulation in the bulk and at the interface for PSCs is still unexplored. Herein, an interlayer of polyaspartic acid (PASP) was introduced at the interface of a hole transporting layer and a perovskite absorber to regulate both the film quality and interface property for BDA-based DJ quasi-2D PSCs (n = 5). The PASP interlayer suppressed the charge recombination, restricted the interfacial charge accumulation, and promoted the charge transport in devices and therefore improved the power conversion efficiency of PSCs from 15.03 to 17.34%. Moreover, through device simulation, it was concluded that the increase of open-circuit voltage (Voc) was mainly attributed to the suppression of interface defects, while the increase of short-circuit current (Jsc) was ascribed to the restriction of interface defects and perovskite bulk defects. The improvement of both Voc and Jsc originated from the passivation of shallow defect states. The present work provides a promising route for the fabrication of efficient quasi-2D PSCs and enriches the fundamental understanding of defect regulation on photovoltaic performance.

13.
Heliyon ; 9(4): e14892, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025842

RESUMO

To improve the availability of inorganic phosphorus (P) in soil, we investigated the role of three macromolecular organic acids (MOAs), including fulvic acid (FA), polyaspartic acid (PA), and tannic acid (TA), in reducing the fixation of inorganic P fertilizer in the soil. AlPO4, FePO4, and Ca8H2(PO4)6·5H2O crystals were chosen as insoluble phosphate representatives in the soil to simulate the solubilization process of inorganic P by MOAs. The microstructural and physicochemical properties of AlPO4, FePO4, and Ca8H2(PO4)6·5H2O were determined by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) before and after treatment of MOAs. In addition, the amounts of leached P and fixed inorganic P in Inceptisols and Alfisols affected by MOAs combined with superphosphate (SP) fertilizer were determined by soil leaching experiments. The presence of the three MOAs significantly increased the concentration of leached P and reduced the contents of insoluble inorganic phosphate formed with iron, aluminum, and calcium fixed in the soil, in which PA combined with SP had the most significant effect. Furthermore, the less inorganic P fixation in the combination treatment of MOAs and SP resulted in a greater wheat yield and P uptake. Therefore, MOAs could be a synergistic material for increasing P fertilizer utilization.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36749688

RESUMO

Three novel actinomycete strains, designated TRM66264-DLMT, TRM88002T and TRM88003T, were isolated by using polyaspartic acid as a water-retaining agent for the enrichment in situ. The 16S rRNA gene sequence and phylogenetic analyses of three strains indicated that they belonged to the genus Actinoplanes. The phylogenetically closest strains of TRM66264-DLMT, TRM88002T and TRM88003T were Actinoplanes bogorensis LIPI11-2-Ac043T (98.4 %), Actinoplanes abujensis A4029T (98.0 %) and Actinoplanes ferrugineus IFO15555T (98.1 %), respectively. The major polar lipids of strains TRM66264-DLMT and TRM88002T were phosphatidylethanolamine and disphosphatidylglycerol, while strain TRM88003T only had phosphatidylethanolamine. The predominant menaquinones of strain TRM66264-DLMT were identified as MK-9(H4) and MK-9 (H6). Strains TRM88002T and TRM88003T had MK-9(H4). The cell-wall peptidoglycan of three strains contained meso-diaminopimelic acid. The whole-cell sugars of strain TRM66264-DLMT were identified as arabinose, glucose, galactose and xylose. Strains TRM88002T and TRM88003T mainly had arabinose and glucose. The DNA G+C content of strains TRM66264-DLMT, TRM88002T and TRM88003T were 70.48, 70.46 and 70.64 mol%, respectively. Genotypic and phenotypic analysis confirmed that all three strains sre new members of the genus Acinoplanes. Therefore, it is proposed that strains TRM66264-DLMT, TRM88002T and TRM88003T represent three novel species of the genus Actinoplanes, for which the names Actinoplanes polyasparticus sp. nov. (type strain TRM66264-DLMT=CCTCC AA 2021015T=LMG 32389T), Actinoplanes hotanensis sp. nov. (type strain TRM88002T=CCTCC AA 2021036T=LMG 32621T) and Actinoplanes aksuensis sp. nov. (type strain TRM88003T=CCTCC AA 2021037 T=LMG 32622T) are proposed.


Assuntos
Actinoplanes , Ácidos Graxos , Ácidos Graxos/química , Fosfatidiletanolaminas , Água , Filogenia , RNA Ribossômico 16S/genética , Arabinose , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Glucose , Vitamina K 2 , Fosfolipídeos/análise
15.
Sci Total Environ ; 862: 160736, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493821

RESUMO

Cadmium is highly toxic and one of the most dangerous metal pollutants in soil, and poses a serious threat to human health through soil-crop-food chain transmission. Polyaspartic acid (PASP) is a biodegradable additive that is environment-friendly compared to traditional chelating agents. Current studies have explored its effect on auxiliary phytoextraction at a laboratory scale; however, the method is still rarely reported at the field scale. Therefore, this study used two ecotypes of Pennisetum sinese in a field experiment for 3 years in Jiaoxi Township, Liuyang City, Hunan Province, China, to understand the effect of PASP on the phytoremediation of Cd-contaminated soil and soil quality through long-term field studies. Moreover, because the soil microbial community responds well to the phytoremediation effect of heavy metal (including Cd)-contaminated soil, the changes in rhizosphere soil microbial community diversity and composition were analyzed. After 2 years of PASP-enhanced phytoremediation, the PASP application increased the total Cd reduction in soil by 237 % and 255 %, and the soil DTPA-extractable Cd content decreased to 0.092 and 0.087 mg kg-1. When the application of PASP ceased in the third year, the two ecotypes of P. sinese obtained after harvest could achieve feed safety. Our study showed that the application of PASP could significantly increase the Cd extraction capacity and shoot biomass of P. sinese, and maintain soil health by optimizing the composition and structure of rhizosphere bacterial communities. The rhizosphere bacterial community structure was improved and dominated by Acidobacteriota, Proteobacteria, and Chloroflexi at the phylum level, and the increased abundance of Acetobacter, Enterobacter, Pseudomonas, and Stenotrophomonas at the genus level may promote heavy metal detoxification in soil, plant growth, and phytoremediation. Long-term field monitoring demonstrated that the low-cost and eco-friendly features of PASP made it a good candidate for enhancing phytoextraction efficiency and regulating soil microbial communities for remediation.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Humanos , Cádmio/análise , Solo/química , Fazendas , Biodegradação Ambiental , Rizosfera , Poluentes do Solo/análise , Metais Pesados/análise
16.
Arch Microbiol ; 205(1): 35, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562907

RESUMO

Water-saving is one of the most important problems in agricultural development, especially in arid and semi-arid areas. The effects of polyaspartic acid (PASP) on soil water storage, soil microbial community, soil physiochemical properties, cotton yield and fiber quality were studied to find water-saving material utilized in cotton field. The experiment was divided into two parts, the first part concerned the direct application of three different amounts of PASP under field conditions. In the second part, PASP was mixed with soil in different proportions and the mixtures were put into bottles, which were then buried in the cotton field. The application of PASP improved the water-holding capacity and thus increased water content available to the cotton root system in the cotton field for a long time, and significantly (p < 0.05) increased the content of soil organic matter, available P and ammonium-N. Relative abundances of Methylophaga, Sphingomonas, Cupriavidus, Pseudeurotium, Fusarium and Nectria were significantly affected by applying PASP. Compared to the control group, 15, 75 and 150 kg ha-1 of PASP increased seed cotton yield by 3.94, 8.31 and 7.71%, respectively. The application of PASP also increased the reflectance degree, Micronaire and short fiber index of cotton. These results suggested that 75 kg ha-1 of PASP can be appropriate to alleviate drought stress in arid and semi-arid areas.


Assuntos
Solo , Água , Solo/química , Microbiologia do Solo , Agricultura
17.
Carbohydr Polym ; 296: 119940, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087989

RESUMO

Oxidative stress is a distinguishing feature in atherosclerosis disease. Reactive oxygen species (ROS) can increase the oxidized low density lipoprotein (ox-LDL) and oxidative damage to macrophages in the plaque. Although antioxidant agents such as N-acetylcysteine are used to treat atherosclerosis, but provide a poor clinical benefit to the majority of patients with atherosclerosis. Here we have designed hyaluronic acid-guided assemblies of ceria nanozymes (HA-CeO2 NPs) as novel plaque-targeting ROS scavengers. The introduction of hyaluronic acid not only provide the stability and biocompatibility, but also surprisingly enhance SOD-mimic activities of ceria nanozymes compared to bare CeO2 precipitates, dextran or poly-aspartic acid coated ceria nanozymes. Interestingly, we find HA-CeO2 NPs not only actively target plaque-associated macrophages in atherosclerosis to remove superfluous ROS and protect macrophages from ROS-caused damages, but also effectively inhibit endocytosis of ox-LDL by activated macrophages. We believe HA-CeO2 nanozymes can serve as a simple and promising platform for anti-atherosclerotic therapy.


Assuntos
Aterosclerose , Ácido Hialurônico , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio
18.
Plants (Basel) ; 11(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807676

RESUMO

Innovative approaches to enhance N fertilization to improve season-long N availability are essential to optimal sorghum (Sorghum bicolor, (L.) Moench.) productivity and N use efficiency. A two-year field experiment was conducted in the 2020 and 2021 summer seasons on the North China Plain to determine the effects of a novel urea coated with polyaspartic acid (PAA) (PN) and a control treatment (CN) on grain sorghum yield and N utilization characteristics at four N application rates (0, 60, 120, and 240 kg ha-1). The results showed that sorghum yield, agronomic traits (including leaf area duration (LAD), crop growth rate (CGR), and dry matter accumulation (DMA)), the accumulation of nitrate N and ammonium N in the 0-60 cm soil layer, stover and grain N content, and total N uptake (NUT) in 2020 and 2021 significantly increased as N application rates increased from 0 to 240 kg ha-1, whereas nitrogen agronomic efficiency (NAE), N uptake efficiency (NUpE), and N utilization efficiency (NUtE) varied inversely with increasing N application rates. Compared to CN, PN demonstrated a significant enhancement in grain sorghum yield, LAD, and CGR, from 3.3% to 7.1%, from 4.8% to 6.1%, and from 5.8% to 6.8%, respectively, at 60 and 120 kg N ha-1. PN improved the N availability (mainly nitrate-N) in the sorghum soft dough and the stover and grain N content at harvest and NUT, NUpE, and NAE accordingly compared with CN at the 60 and 120 kg ha-1 N application rates. In short, our two-year field trials demonstrated that PN with 120 kg N ha-1 is recommended in grain sorghum to optimize sorghum productivity and nitrogen use efficiency at the current yield level in the North China Plain.

19.
Biomimetics (Basel) ; 7(2)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35645181

RESUMO

The aim of this study was to investigate the effects of two process-directing agents (polyaspartic acid and osteopontin) used in a polymer-induced liquid-precursor (PILP) process on the remineralization of bacteria-induced enamel demineralization. Enamel demineralization lesions (depths of about 180-200 µm) were created and exposed to Streptococcus mutans, cultured with a 10% sucrose solution for 21 days, and remineralized using a PILP process (pH = 7.4, 14 days) with a calcium phosphate solution containing either polyaspartic acid or osteopontin in the presence or absence of fluoride (0.5 ppm). The specimens were examined under scanning electron microscopy. The fluoride was successfully incorporated into the PILP remineralization process for both polyaspartic acid and osteopontin. When the fluoride was added to the PILP remineralization solution, there was more uniform remineralization throughout the lesion than with either polyaspartic acid or osteopontin alone. However, in the absence of these process-directing agents, fluoride alone showed less remineralization with the formation of a predominantly surface-only layer. The PILP remineralization process relies on the ability of process-directing agents to stabilize calcium phosphate ions and holds promise for enamel lesion remineralization, and these agents, in the presence of fluoride, seem to play an important role as a booster or supplement in the continuation of remineralization by reducing the mineral gains at the surface layer.

20.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683915

RESUMO

For the development of biodegradable superabsorbent polymers, the effect of the cross-linking length on the absorption characteristics of the Na salt of polyaspartic acid (PAspNa) was demonstrated using different concentrations of diamine cross-linking agents bearing carbon chains of different lengths, viz., ethylenediamine, 1,6-hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane, and 1,12-diaminododecane were used as cross-linking agents. The absorption of PAspNa was measured in deionised water and in a 0.9% aqueous NaCl solution. Under the conditions tested, when the alkyl chain of PAspNa was too short or too long, the absorbency was low and the cross-linking length was optimum. The success of the cross-linking reaction was confirmed by FT-IR spectroscopy. The degree of cross-linking was estimated and the ideal concentration for maximum water absorption was determined by elemental analysis. The sample obtained by cross-linking 1,8-diaminooctane at a concentration of 0.11 g/g polysuccinimide (PSI) showed the highest absorption. The thermal properties of each material were determined by dynamic scanning calorimetry. Therefore, the length of the cross-linking agent was found to strongly influence water absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA