RESUMO
Covalent polymer networks find wide utility in diverse engineering applications owing to their desirable stiffness and resilience. However, the rigid covalent chemical structure between crosslinking points imposes limitations on enhancing their toughness. Although the incorporation of sacrificial chemical bonds has shown promise in improving toughness through energy dissipation, composite networks struggle to maintain both rapid recovery and stiffness. Consequently, a significant challenge persists in achieving a covalent network that combines high strength, stiffness, toughness, and fast recovery performance. To address this challenge, we propose a novel sacrificial structure termed "sacrificial conformation." In this approach, ß-cyclodextrin is covalently embedded into the network skeleton as the sacrificial conformation element. Compared to traditional covalent networks (LCN), well-designed cyclodextrin-embedded covalent network (CCN) exhibit a 100-fold increase in Young's modulus and a 60-fold increase in toughness. Importantly, CCN maintains excellent elasticity, ensuring swift recovery after deformation. This sacrificial conformational strategy enables efficient energy dissipation without necessitating the rupture of chemical bonds, thereby overcoming the limitations of traditional approaches. This advancement holds great promise for the design and fabrication of advanced elastomers and hydrogels with superior mechanical properties and dynamic behavior.
RESUMO
Organogel materials are vital for impact or shock resistance because of their highly tailored dynamic properties. However, concurrently achieving excellent anti-impact and damping performances, high stability, and self-healing properties is challenging. Herein, a novel intelligent protective organogel (IPO) comprising a dynamic boronic ester containing poly(urethane-urea) as the network skeleton with a matching mesh size is synthesized, the network precisely entraps the hyperbranched fluid used as the bulky solvent via steric hindrance. The IPO exhibits self-healing ability, excellent impact responsiveness (a 1950-fold increase in flow stress under various impact speeds), and energy dissipation (the loss factor >0.8 from 10-4 to 104 Hz). The IPO maintains its dynamic mechanical properties during hot pressing and hydrolysis, exhibiting high stability. Furthermore, the IPO exhibits omnibearing protection. When used as a protective coating, the IPO dissipates the impact force by 87% and 89% of control upon passive and active impact, respectively. When used as a shock pad, it attenuates 91% of the amplitude in the high-frequency vibrations. This study offers a novel perspective on the synthesis of tailored sterically hindered organogel and provides valuable insights into the development of next-generation intelligent protective materials that exhibit impact and vibration resistance.
RESUMO
Various transient and permanent bonds are commonly combined in increasingly complex hierarchical structures to achieve biomimetic functions, along with high mechanical properties. However, there is a traditional trade-off between mechanical strength and biological functions like self-healing. To fill this gap, we develop a metallo-supramolecular polymer hydrogel based on the hyperbranched poly(ethylene imine) (PEI) backbone and phenanthroline ligands, which have unexpectedly high plateau modulus at low concentrations. Rheological measurements demonstrate nonuniversal metal-ion-specific dynamics, with significantly larger plateau moduli, longer relaxation times, and stronger temperature dependencies, compared to equivalent networks based on model-type telechelic precursors, which cannot be explained by the theory of linear viscoelasticity. TEM images reveal the in situ mineralization of metal ions, which nucleate by the ligand complexation and grow thanks to the spontaneous reducing effect of the PEI backbone. Evidently, the complex lifetime works against Ostwald ripening, resulting in the formation of thermodynamically stable smaller particles. This trend is followed by time-dependent network buildup measurements and is confirmed by a kinetic model for particle formation and aggregation. The spontaneous formation of particles with complex lifetime-dependent sizes can explain the nonuniversal dynamics through the interaction of polymer segments and particles at the nanoscale. This work describes how the polymer backbone can affect the strength and stability of supramolecular bonds, promising for combining high mechanical properties and self-healing comparable to natural tissues.
RESUMO
Semi-interpenetrating polymer networks (SIPNs) have garnered significant interest due to their potential applications in self-healing materials, drug delivery systems, electrolytes, functional membranes, smart gels and, toughing. SIPNs combine the characteristics of physical cross-linking with advantageous chemical properties, offering broad application prospects in materials science and engineering. This perspective introduces the history of semi-interpenetrating polymer networks and their diverse applications. Additionally, the ongoing challenges associated with traditional semi-interpenetrating polymer materials are discussed and provide an outlook on future advancements in novel functional SIPNs.
RESUMO
Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10-5 to 5.04 × 10-4 S cm-1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.
RESUMO
The convergence of polymer and pharmaceutical sciences has advanced drug delivery systems significantly. Carbohydrate polymers, especially carboxymethylated ones, offer versatile benefits for pharmaceuticals. Interpenetrating polymer networks (IPNs) combine synthetic and natural polymers to enhance drug delivery. The study aims to develop IPN beads using sodium carboxymethyl cellulose (SCMC) and carboxymethyl konjac glucomannan (CMKGM) for controlled release of ibuprofen (IB) after oral administration. Objectives include formulation optimization, characterization of physicochemical properties, evaluation of pH-dependent swelling and drug release behaviors to advance biocompatible and efficient oral drug delivery systems. The beads were analyzed using SEM, FTIR, DSC, and XRD techniques. Different ratio of polymers (CMKGM:SCMS) and crosslinker concentrations (2&4 %w/v) were used, significantly impacting bead size, swelling, drug encapsulation, and release characteristics. DSC results indicated higher thermal stability in IPN beads compared to native polymers. XRD revealed IB dispersion within the polymer matrix. IPN beads size ranged from 580 ± 0.56 to 324 ± 0.27 µm, with a nearly spherical shape. IPN beads exhibited continuous release in alkaline conditions (pH 7.4) and minimal release in acidic media (pH 1.2). These findings suggest that the formulated IPN beads can modulate drug release in both acidic and alkaline environments, potentially mitigating the gastric adverse effects often associated with oral administration of IB.
Assuntos
Carboximetilcelulose Sódica , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Ibuprofeno , Mananas , Carboximetilcelulose Sódica/química , Mananas/química , Ibuprofeno/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , MicroesferasRESUMO
In this study, we use modified cationic nanocarriers as vehicles for the intracellular delivery of therapeutic siRNA. After developing nanocarrier formulations with appropriate pKa, size, swellability, and cytocompatibility, we investigated the importance of siRNA loading methods by studying the impact of the pH and time over which siRNA is loaded into the nanocarriers. We concentrate on diffusion-based loading in the presence and absence of electrostatic interactions. siRNA release kinetics were studied using samples prepared from nanocarriers loaded by both mechanisms. In addition, siRNA delivery was evaluated for two formulations. While previous studies were conducted with samples prepared by siRNA loading at low pH values, this research provides evidence that loading conditions of siRNA affect the release behavior. This study concludes that this concept could prove advantageous for eliciting prolonged intracellular release of nucleic acids and negatively charged molecules, effectively decreasing dose frequency and contributing to more effective therapies and improved patient outcomes. In addition, our findings could be leveraged for enhanced control over siRNA release kinetics, providing novel methods for the continued optimization of cationic nanoparticles in a wide array of RNA interference-based applications.
RESUMO
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.
RESUMO
Acid recovery from acidic waste is a pressing issue in current times. Chemical methods for recovery are not economically feasible and require significant energy input to save the environment. This study reported a semi-interpenetrating polymer network (semi-IPN) anion exchange membranes (AEMs) for acid recovery by diffusion dialysis with excellent dimensional stability, high oxidation stability, good acid dialysis coefficient (UH +) and high separation factor (S). Semi-IPN AEMs are prepared by ring-open cross-linked quaternized polybenzoxazine (AQBZ) with poly(vinyl alcohol-co-ethylene), where AQBZ is obtained by Mannich reaction and Menshutkin reaction. All four proportions of semi-IPNs exhibit clear micro-phase separation, which is conducive to ion transport. The water uptake (WU) of the four semi-IPNs ranges from 14.2 % to 19.2 %, while the swelling ratio (SR) remains between 8.7 % and 11.3 %. These results indicate that the cross-linked structure in the designed semi-IPNs effectively control swelling and ensure dimensional stability. The thermal degradation temperature (Td5) of semi-IPN4:6 to semi-IPN7:3 varies from 309 °C to 289 °C, with an oxidation stability weight loss rate (WOX) ranging from 91.5 % to 93.5 %, demonstrating excellent thermal stability and oxidation stability. The semi-IPNs also show good UH + values ranging from 11.9-16.3*10-3â m/h and high S values between 38.6 and 45.9, indicating the promising potential of the semi-IPNs.
RESUMO
Gelatin polymers made from partially degraded collagen are important biomaterials, but their in-situ analysis suffers from uncontrollable covalent labelling and poor spatial-temporal imaging resolution. Herein, three tetrazolate-tagged tetraphenylethylene fluorophores (TPE-TAs) are introduced for practical fluorogenic labelling of gelatin in aqueous phase and hydrogels. These probes with aggregation-induced emission characteristics offer negligible background and elicit turn-on fluorescence by simply mixing with the gelatin in aqueous phase, giving a detection limit of 0.15â mg/L over a linear dynamic range up to 100â mg/L. This method does not work for collagens and causes minimal interference with gelatin properties. Mechanistic studies reveal a key role for multivalent electrostatic interactions between the abundant basic residues in gelatin (e. g., lysine, hydroxylysine, arginine) and anionic tetrazolate moieties of the lipophilic fluorophore synergistically in spatially rigid macromolecular encapsulation to achieve fluorogenic labelling. The AIE strategy by forming non-covalent fluorophore-gelatin complexes was developed for novel hydrogels that exhibited reversible fluorescence in response to dynamic microstructural changes in the hydrogel scaffold upon salting-in/out treatments, and enabled high spatial-temporal imaging of the fiber network in lyophilized samples. This work may open up avenues for in-situ imaging analysis and evaluation of gelatin-based biomaterials during processes such as inâ vivo degradation and mineralization.
Assuntos
Corantes Fluorescentes , Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/química , Corantes Fluorescentes/química , Água/química , Polímeros/química , Estilbenos/química , Materiais Biocompatíveis/química , Tetrazóis/químicaRESUMO
The presence of a polymer network and/or the addition of ferroelectric nanoparticles to a nematic liquid crystal are found to lower transition temperatures and birefringence, which indicates reduced orientational order. In addition, the electro-optic switching voltage is considerably increased when a polymer network is formed by in situ polymerization in the nematic state. However, the resulting polymer network liquid crystal switches at similar voltages as the neat liquid crystal when polymerization is performed at an elevated temperature in the isotropic state. When nanoparticle dispersions are polymerized at an applied DC voltage, the transition temperatures and switching voltages are reduced, yet they are larger than those observed for polymer network liquid crystals without nanoparticles polymerized in the isotropic phase.
RESUMO
The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.
Assuntos
Regeneração Óssea , Proliferação de Células , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Animais , Linhagem Celular Tumoral , Transdução de Sinais , Sobrevivência Celular , Engenharia Tecidual/métodos , Quitosana/química , Fosfatase Alcalina/metabolismo , Osseointegração , Polímeros/química , PorosidadeRESUMO
The extraction of 99TcO4- from radioactive effluents is extremely crucial for the purposes of nuclear disposal and environmental remediation. Herein, utilizing a facile and low-cost synthesis method, we report a pyridinium-based cationic polymer network, CPP-Cl, with impressive adsorption performance and ultrafast adsorption kinetics towards ReO4-. The structure featuring highly density of charged pyridinium units was synthesized, making it an effective adsorbent for capturing ReO4-. The material showed fast ReO4- adsorption kinetics reaching adsorption equilibrium within 30 s, an excellent capture capability of 1069.7 mg/g, and exceptional separation efficiency of 94.3% for removing 1000 ppm ReO4-. Furthermore, it possessed excellent reusability in multiple sorption/desorption trials and good uptake capacity within a widely ranging pH values. It is noteworthy that the extraction efficiency of CPP-Cl for ReO4- from simulated nuclear waste can be up to 94.2%. The favorable performance of the material in multiple tests revealed that CPP-Cl has tremendous potential as a high-efficiency sorbent for capturing 99TcO4-/ReO4- in complex nuclear associated environmental systems.
Assuntos
Polímeros , Adsorção , Polímeros/química , Porosidade , Cinética , Compostos de Piridínio/química , Recuperação e Remediação Ambiental/métodosRESUMO
Articular cartilage is an avascular and almost acellular tissue with limited self-regenerating capabilities. Although injectable hydrogels have garnered a lot of attention as a promising treatment, a biocompatible hydrogel with adequate mechanical properties is yet to be created. In this study, an interpenetrating network hydrogel comprised of chitosan and silk fibroin was created through electrostatic and hydrophobic bonds, respectively. The polymeric network of the scaffold combined an effective microenvironment for cell activity with enhanced mechanical properties to address the current issues in cartilage scaffolds. Furthermore, microspheres (MS) were utilized for a controlled release of methylprednisolone acetate (MPA), around ~75 % after 35 days. The proposed scaffolds demonstrated great mechanical stability with ~0.047 MPa compressive moduli and ~145 kPa compressive strength. Moreover, the degradation rate of the samples (~45 % after 35 days) was optimized to match neo-cartilage formation. Furthermore, the use of natural biomaterials yielded good biocompatibility with ~76 % chondrocyte viability after 7 days. According to gross observation after 12 weeks the defect site of the treated groups was filled with minimally discernible boundary. These results were confirmed by histopathology assays were the treated groups showed higher chondrocyte count and collagen type II expression.
Assuntos
Cartilagem Articular , Quitosana , Fibroínas , Hidrogéis , Microesferas , Regeneração , Quitosana/química , Fibroínas/química , Animais , Regeneração/efeitos dos fármacos , Hidrogéis/química , Cartilagem Articular/efeitos dos fármacos , Alicerces Teciduais/química , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Coelhos , Sobrevivência Celular/efeitos dos fármacos , Injeções , Acetato de Metilprednisolona/químicaRESUMO
Flexible perovskite solar cells (pero-SCs) have the potential to overturn the application scenario of silicon photovoltaic technology. However, their mechanical instability severely impedes their practical applicability, and the corresponding intrinsic degradation mechanism remains unclear. In this study, the degradation behavior of flexible pero-SCs is systematically analyzed under mechanical stress and it is observed that the structural failure first occurs in the polycrystal perovskite film, then extend to interfaces. To suppress the structural failure, pentaerythritol triacrylate, a crosslinked molecule with three stereoscopic crosslink sites, is employed to establish a 3D polymer network in both the interface and bulk perovskite. This network reduced the Young's modulus of the perovskite and simultaneously enhanced the interfacial toughness. As a result, the formation of cracks and delamination, which occur under a high mechanical stress, is significantly suppressed in the flexible pero-SC, which consequently retained 92% of its initial power conversion efficiency (PCE) after 20 000 bending cycles. Notably, the flexible device also shows a record PCE of 24.9% (certified 24.48%).
RESUMO
Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young's moduli of 3-4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering.
RESUMO
Efficient uranium capture from wastewater holds great importance for the environmental remediation and sustainable development of nuclear energy, but it is a tremendous challenge. Herein, a facile and scalable approach is reported to fabricate functionalized hierarchical porous polymers (PPN-3) decorated with high density of phosphate groups for uranium adsorption. The as-constructed hierarchical porous structure could allow rapid diffusion of uranyl ions, while abundant phosphate groups that serve as adsorption sites could provide the high affinity for uranyl. Consequently, PPN-3 shows a high uranium adsorption uptake of 923.06 mg g-1 and reaches adsorption equilibrium within simply 10 min in uranium-spiked aqueous solution. Moreover, PPN-3 affords selective adsorption of uranyl over multiple metal ions and possesses a rapid and high removal rate of U(VI) in real water systems. Furthermore, this study offers direct polymerization strategy for the cost-effective fabrication of phosphate-functionalized porous organic polymers, which may provide promising application potential for uranium extraction.
Assuntos
Polímeros , Urânio , Urânio/química , Adsorção , Polímeros/química , Porosidade , Purificação da Água/métodos , Poluentes Radioativos da ÁguaRESUMO
Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62â MPa; 14.26â MPa; 22.93â MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69â MPa; 63.61â MPa; 141.50â MPa), and toughness (1.12â MJ/m3; 21.39â MJ/m3; 49.62â MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.
RESUMO
Environmentally friendly crosslinked polymer networks feature degradable covalent or non-covalent bonds, with many of them manifesting dynamic characteristics. These attributes enable convenient degradation, facile reprocessibility, and self-healing capabilities. However, the inherent instability of these crosslinking bonds often compromises the mechanical properties of polymer networks, limiting their practical applications. In this context, environmentally friendly dual-crosslinking polymer networks (denoted EF-DCPNs) have emerged as promising alternatives to address this challenge. These materials effectively balance the need for high mechanical properties with the ability to degrade, recycle, and/or self-heal. Despite their promising potential, investigations into EF-DCPNs remain in their nascent stages, and several gaps and limitations persist. This Review provides a comprehensive overview of the synthesis, properties, and applications of recent progress in EF-DCPNs. Firstly, synthetic routes to a rich variety of EF-DCPNs possessing two distinct types of dynamic bonds (i.e., imine, disulfide, ester, hydrogen bond, coordination bond, and other bonds) are introduced. Subsequently, complex structure- and dynamic nature-dependent mechanical, thermal, and electrical properties of EF-DCPNs are discussed, followed by their exemplary applications in electronics and biotechnology. Finally, future research directions in this rapidly evolving field are outlined.
RESUMO
Sustainable carbon dots comprising surficial oxime ester groups following homolytic bond cleavage exhibit potential as photoinitiators for traditional free radical photopolymerization. Carbon dots were made following a solvothermal procedure from sustainable furfural available from lignocellulose. Surficial aldehyde moieties reacted with hydroxylamine to the respective oxime while reaction with benzoyl chloride resulted in a biobased Typeâ I photoinitiator comprising sustainable carbon dot (CD-PI). Photoinitiating ability was compared with the traditional photoinitiator (PI) ethyl (2,4,6-trimethyl benzoyl) phenyl phosphinate (TPO-L) by real-time FTIR with UV exposure at 365â nm. Photopolymer composition based on a mixture of urethane dimethacrylate (UDMA) and tripropylene glycol diacrylate (TPGDA) resulted in a similar final conversion of about 70 % using either CD-PI or TPO-L. Nevertheless, it appeared homogeneous in the case of compositions processed with CD-PI, while those made with TPO-L were heterogeneous as shown by two glass transition temperatures. Moreover, the migration rate of CD-PI in the cured samples was lower in comparison with those samples using TPO-L as PI.