Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Nanomaterials (Basel) ; 14(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39269094

RESUMO

A viable tactic to effectively address the climate crisis is the production of renewable fuels via photocatalytic reactions using solar energy and available resources like carbon dioxide (CO2) and water. Organic polymer material-based photocatalytic materials are thought to be one way to convert solar energy into valuable chemicals and other solar fuels. The use of porous organic polymers (POPs) for CO2 fixation and capture and sequestration to produce beneficial compounds to reduce global warming is still receiving a lot of interest. Visible light-responsive organic photopolymers that are functionally designed and include a large number of heteroatoms and an extended π-conjugation allow for the generation of photogenerated charge carriers, improved absorption of visible light, increased charge separation, and decreased charge recombination during photocatalysis. Due to their rigid structure, high surface area, flexible pore size, permanent porosity, and adaptability of the backbone for the intended purpose, POPs have drawn more and more attention. These qualities have been shown to be highly advantageous for numerous sustainable applications. POPs may be broadly categorized as crystalline or amorphous according to how much long-range order they possess. In terms of performance, conducting POPs outperform inorganic semiconductors and typical organic dyes. They are light-harvesting materials with remarkable optical characteristics, photostability, cheap cost, and low cytotoxicity. Through cocatalyst loading and morphological tweaking, this review presents optimization options for POPs preparation techniques. We provide an analysis of the ways in which the preparative techniques will affect the materials' physicochemical characteristics and, consequently, their catalytic activity. An inventory of experimental methods is provided for characterizing POPs' optical, morphological, electrochemical, and catalytic characteristics. The focus of this review is to thoroughly investigate the photochemistry of these polymeric organic photocatalysts with an emphasis on understanding the processes of internal charge generation and transport within POPs. The review covers several types of amorphous POP materials, including those based on conjugated microporous polymers (CMPs), inherent microporosity polymers, hyper-crosslinked polymers, and porous aromatic frameworks. Additionally, common synthetic approaches for these materials are briefly discussed.

2.
J Mech Behav Biomed Mater ; 160: 106724, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39303419

RESUMO

The reconstruction of maxillofacial defects caused by anomalies, fractures, or cancer is challenging for dentofacial surgeons. To produce efficient, patient-specific implants with long-term performance and biological suitability, numerous methods of manufacturing are utilized. Because additive manufacturing makes it possible to fabricate complex pore structure samples, it is now recognized as an acceptable option to design customized implants. It is well recognized that a porous structure with proper design promotes accelerated cell proliferation, which enhances bone remodeling. Porosity can also be employed to modify the mechanical characteristics of fabricated implants. Thus, design and choice of rational lattice structure is an important task. The influence of the structure of jaw implants made of highly porous titanium-based materials on their mechanical properties and bone tissue growth was studied. Based on a 3D computer model of Wigner-Seitz lattice structure, the model samples were fabricated from Ti6Al4V powder by selective laser melting to characterize the mechanical properties of the samples depending on their macroporosity. Then two types of jaw bone implants were manufactured to conduct studies of bone tissue ingrowth when implanted in laboratory animals. The research was carried out in several stages: design and production of the implants for replacing incomplete defects of the lower jaw; implantation of SLM-printed implants in laboratory animals into an artificially produced defect of the lower jaw; analysis of the degree of fixation of the "implant - bone" connection (for implantation periods from 2 weeks to 9 months). During the research, Ti-alloy structures with cell diameters of 2-3 mm and macroporosity of 90-97% mimicking the spongy structure of trabecular bone tissue, were characterized by a compressive strength of 12.47-37.5 MPa and an elastic modulus of 0.19-1.23 GPa, corresponding to the mechanical properties of bone tissue. Active processes of tissue growth into implant cells were detected 2 weeks after implantation, the significant differences in the volume and types of filling tissue depending on the size of the cell were described. Recommendations for choosing the cell size depending on the type of bone tissue damage were given. When using SLM-printed implants with lattice structure (cell sizes from 1 to 3 mm), an active osteosynthesis processes occurred, which culminated in the formation of bone tissue inside the implant cells 9 months after implantation, with 68% of the samples characterized by the maximum degree of implant fixation. Implants with 3 mm cells with macropores diameters of 850 µm were recommended for replacing cavities after removal of perihilar cysts. To replace complete and partial defects, it was recommended to use implants with a cell size of 2 and 3 mm.

3.
Biomater Adv ; 166: 214043, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276660

RESUMO

Porous polyetheretherketone (P-PEEK) is widely used as the material for making implant screws, and yet its mechanical properties and osseointegration for ultilization are still unsatisfied. In this work, the effects of the porosity distribution on the mechanical properties and osseointegration were investigated. Functionally graded P-PEEK (FGP-PEEK) and uniform P-PEEK (UP-PEEK) were developed by infiltration casting technology. The mechanical properties of the P-PEEK were studied by compressive and bending tests, and the osseointegration was evaluated by in vitro and rabbit femur experiments. The prepared FGP-PEEK was composed of the central dense part and its surrounding porous one where the pores were isodiametric and interconnected. Both the compressive strength and bending strength of the FGP-PEEK with graded porosity were higher than those of the UP-PEEK with uniform porosity. The mechanical properties of the FGP-PEEK were comparable to that of the human cancellous bone. The in vitro and in vivo experiments indicated the FGP-PEEK had no cytotoxicity, and its osseointegration was better than the UP-PEEK. The results demonstrated that the graded porosity had a superiority in the mechanical properties and osseointegration of the P-PEEK scaffolds compared to the uniform porosity. The influencing mechanisms of the porosity distribution on the mechanical properties and osseointegration were also clarified. Additionally, the osseointegration of the FGP-PEEK gradually increased as the surface porosity increased from 30 % to 50 %. The 50 %-surface porosity FGP-PEEK was a promising material on the application of the implant screws.

4.
Materials (Basel) ; 17(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39336231

RESUMO

Conventional analytical formulas for predicting the effective Young's modulus of porous materials often rely on simplifying assumptions and do not explicitly incorporate microstructural information. This study investigates the impact of regular versus irregular pore distributions on the stiffness of porous materials using microstructure-free finite element modeling (MF-FEM). After conducting a convergence study, MF-FEM predictions were validated against experimental data and used to assess the accuracy of commonly employed analytical models. The results demonstrate that materials with irregular microstructures exhibit a rapid decrease in Young's modulus, approaching zero at porosities slightly greater than 50%. In contrast, regular microstructures show a more gradual decline, maintaining significant stiffness until the porosity exceeds 90%. Additionally, the study reveals that some analytical formulas align better with irregular microstructures while others are more suited to regular ones, attributable to the underlying assumptions of these models. These findings underscore the necessity of considering pore distribution patterns in modeling to accurately predict the mechanical behavior of porous materials.

5.
ACS Nano ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39344127

RESUMO

Fluorescent porous materials based on aggregation-induced emission (AIE) are growing into a sparkling frontier in biomedical applications. Exploring those materials represents a win-win integration and has recently progressed at a rapid pace, mainly benefiting from intrinsic advantages including tunable pore size and structure, strong guest molecule encapsulation ability, superior biocompatibility, and photophysical outcomes. With the great significance and rapid progress in this area, this review provides an integrated picture on AIE luminogen-based porous materials. It encompasses inorganic, organic, and inorganic-organic porous materials, exploring fundamental concepts and the relationship between AIE performance and material design and highlighting significant breakthroughs and the latest trends in biomedical applications. In addition, some critical challenges and future perspectives in the development of AIE luminogen-based porous materials are also discussed.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39320928

RESUMO

To improve the battery efficiency and cycling stability of sulfonated polyimide (SPI), a polyphosphazene with built-in -SO3H moieties (PP-SO3H), which is a porous covalent organic framework (COF) material, is facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and p-diaminobenzenesulfonic acid. Due to its tunable pore size and flexible molecular design, the COF material can address the trade-off between the conductivity and the ion permeability of ion exchange membranes well, thereby improving the ion selectivity of membranes. The experimental results show that the SPI/PP-SO3H composite membrane has an excellent conductivity (up to 114.8 mS cm-1); the ion selectivity of the SPI/2% PP-SO3H membrane is 11.69 × 104 S min cm-3, which is 2.18 times higher than that of the SPI base membrane. PP-SO3H also improves the SPI membrane's mechanical strength, and the effect of PP-SO3H on SPI intermolecular interactions is analyzed by surface electrostatic potential (ESP) theoretical calculations. The Coulombic efficiency (CE) of the SPI/2% PP-SO3H membrane is 98.92%, the energy efficiency (EE) is 84.1% at a current density of 100 mA cm-2, and the self-discharge time of the SPI/2% PP-SO3H membrane is 3.5 times compared with the SPI base membrane. To measure the cycling stability of the composite membrane, the SPI/2% PP-SO3H membrane is cycled in the VRFB for more than 400 cycles, which is more stable than that of the SPI base membrane. These results show that SPI/2% PP-SO3H composite membranes are viable for VRFB applications.

7.
Chemosphere ; 364: 143149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39182732

RESUMO

Human activity is the cause of the continuous and gradual grooving of environmental contaminants, where some released toxic and dangerous compounds cannot be degraded under natural conditions, resulting in a serious safety issue. Among them are the widely occurring water-soluble perfluoroalkyl and polyfluoroalkyl substances (PFAS), sometimes called "forever chemicals" because of the impossibility of their natural degradation. Hence, a reliable, expressive, and simple method should be developed to monitor and eliminate the risks associated with these compounds. In this study, we propose a simple, express, and portable detection method for water-soluble fluoro-alkyl compounds (PFOA and GenX) using mutually complementary methods: electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS). To implement our method, we developed special substrates based on porous silicon with a top-deposited plasmon-active Au layer by subsequently grafting -C6H4-NH2 chemical moieties to provide surface affinity toward negatively charged water-soluble PFAS. Subsequent EIS utilization allows us to perform semiquantitative detection of PFOA and GenX up to 10-10 M concentration because surface entrapping of PFAS leads to a significant increase in the electrode-electrolyte charge-transfer resistance. However, distinguishing by EIS whether even PFAS were entrapped was impossible, and thus the substrates were subsequently subjected to SERS measurements (allowed by surface plasmon activity due to the presence of a porous Au layer), clearly indicating the appearance of characteristic C-F vibration bands.


Assuntos
Fluorocarbonos , Análise Espectral Raman , Análise Espectral Raman/métodos , Fluorocarbonos/análise , Fluorocarbonos/química , Porosidade , Espectroscopia Dielétrica , Técnicas Eletroquímicas/métodos , Ouro/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Silício/química
8.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124914

RESUMO

The chemical tolerance of ketoenamine covalent organic frameworks (COFs) is excellent; however, the tight crystal structure and low surface area limit their applications in the field of catalysis. In this work, a porous single-atom iron catalyst (FeSAC) with a core-shell structure and high surface area was synthesized by using Schiff base COF nanospheres as the core and ketoenamine COF nanosheets growth on the surfaces. Surface defects were created using sodium cyanoborohydride etching treatment to increase specific surface area. The dye degradation experiments by peroxymonosulfate (PMS) catalyzed by the FeSAC proved that methylene blue can be degraded with a degradation rate constant of 0.125 min-1 under the conditions of 0.1 g L-1 catalyst dosage and 0.05 g L-1 peroxymonosulfate. The FeSAC/PMS system effectively degrades various pollutants in the pH range of 4-10 with over 80% efficiency for four cycles and can be recovered by soaking in iron salt solution. Free radical quenching experiments confirmed that singlet oxygen and superoxide radicals are the main active species for catalysis.

9.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065369

RESUMO

With the integration and miniaturization of modern equipment and devices, porous polymers, containing graphene and its derivatives, with flame-retardancy have become a research hotspot. In this paper, the expanded properties and high-end applications of flame-retardant porous materials containing graphene and its derivatives were discussed. The research progress regarding graphene-based porous materials with multiple energy conversion, thermal insulation, an electromagnetic shielding property, and a high adsorption capacity were elucidated in detail. The potential applications of materials with the above-mentioned properties in firefighter clothing, fire alarm sensors, flexible electronic skin, solar energy storage, energy-saving buildings, stealth materials, and separation were summarized. The construction strategies, preparation methods, comprehensive properties, and functionalization mechanisms of these materials were analyzed. The main challenges and prospects of flame-retardant porous materials containing graphene and its derivatives with expanded properties were also proposed.

10.
Chempluschem ; : e202400364, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978154

RESUMO

Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.

11.
Environ Pollut ; 356: 124335, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848957

RESUMO

Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 µm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by µFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 µm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.


Assuntos
Carvão Vegetal , Filtração , Microplásticos , Casca de Planta , Poluentes Químicos da Água , Carvão Vegetal/química , Filtração/métodos , Casca de Planta/química , Poluentes Químicos da Água/análise , Chuva/química , Eliminação de Resíduos Líquidos/métodos
12.
Int J Biol Macromol ; 275(Pt 1): 133421, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945320

RESUMO

A superabsorbent hydrogel was prepared by the free-radical copolymerization of natural rubber (NR) latex with poly(acrylic acid) (PAA) at NR loadings up to 50 wt%. An NR/PAA hydrogel containing 40 wt% of NR (NR-40) had a water absorption capacity of 214 g/g (21,400 %) of its dry weight. The compressive modulus increased 512 % and sample integrity was improved due to the physical entanglement of NR chains. NR-40 hydrogel removed 97 % of methylene blue (MB) from the aqueous solution in 1 h (at initial concentrations of 10-1000 mg/L) and produced a maximum removal of 1191 mg MB/g of hydrogel at an initial MB concentration of 4500 mg/L. The adsorption of MB was an endothermic process. Fourier transform infrared spectroscopy indicated that hydrogen bonding and electrostatic interaction drove the process. After the in-situ incorporation of ZnO into NR-40, absorbed energy from sunlight generated active species that could photocatalytically degrade adsorbed MB in the hydrogel matrix. The scavenger tests indicated that superoxide radical anions and hydroxyl radicals were the main species for this process. The hydrogel composite material showed good stability and could be regenerated and reused over 10 cycles, degrading >80 % of the adsorbed dye. This novel natural-based hydrogel provides double functions of adsorption and photodegradation of toxic dyes without the requirement of chemicals and a separation process.


Assuntos
Hidrogéis , Azul de Metileno , Óxido de Zinco , Azul de Metileno/química , Óxido de Zinco/química , Hidrogéis/química , Adsorção , Borracha/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Catálise , Purificação da Água/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891539

RESUMO

Thermally stable high-performance phenolic resin aerogels (PRAs) are of great interest for thermal insulation because of their light weight, fire retardancy and low thermal conductivity. However, the drawbacks of PRA synthesis, such as long processing time, inherent brittleness and significant shrinkage during drying, greatly restrict their wide applications. In this work, PRAs were synthesized at ambient pressure through a near-net shape manufacturing technique, where boron-containing thermosetting phenolic resin (BPR) was introduced into the conventional linear phenolic resin (LPR) to improve the pore characteristics, mechanical properties and thermal performances. Compared with the traditional LPR-synthesized aerogel, the processing time and the linear shrinkage rate during the drying of the PRAs could be significantly reduced, which was attributed to the enhanced rigidity and the unique bimodal pore size distribution. Furthermore, no catastrophic failure and almost no mechanical degradation were observed on the PRAs, even with a compressive strain of up to 60% at temperatures ranging from 25 to 200 °C, indicating low brittleness and excellent thermo-mechanical stability. The PRAs also showed outstanding fire retardancy. On the other hand, the PRAs with a density of 0.194 g/cm3 possessed a high Young's modulus of 12.85 MPa and a low thermal conductivity of 0.038 W/(m·K).

14.
Nanomaterials (Basel) ; 14(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38921879

RESUMO

Intelligent and diversified development of modern detection technology greatly affects the battlefield survivability of military targets, especially infrared, acoustic wave, and radar detection expose targets by capturing their unavoidable infrared radiation, acoustic wave, and electromagnetic wave information, greatly affecting their battlefield survival and penetration capabilities. Therefore, there is an urgent need to develop stealth-protective materials that can suppress infrared radiation, reduce acoustic characteristics, and weaken electromagnetic signals. Fibrous three-dimensional porous materials, with their high porosity, excellent structural adjustability, and superior mechanical properties, possess strong potential for development in the field of stealth protection. This article introduced and reviewed the characteristics and development process of fibrous three-dimensional porous materials at both the micrometer and nanometer scales. Then, the process and characteristics of preparing fibrous three-dimensional porous materials through vacuum forming, gel solidification, freeze-casting, and impregnation stacking methods were analyzed and discussed. Meanwhile, their current application status in infrared, acoustic wave, and radar stealth fields was summarized and their existing problems and development trends in these areas from the perspectives of preparation processes and applicability were analyzed. Finally, several prospects for the current challenges faced by fibrous three-dimensional porous materials were proposed as follows: functionally modifying fibers to enhance their applicability through self-cross-linking; establishing theoretical models for the transmission of thermal energy, acoustic waves, and electromagnetic waves within fibrous porous materials; constructing fibrous porous materials resistant to impact, shear, and fracture to meet the needs of practical applications; developing multifunctional stealth fibrous porous materials to confer full-spectrum broadband stealth capability; and exploring the relationship between material size and mechanical properties as a basis for preparing large-scale samples that meet the application's requirement. This review is very timely and aims to focus researchers' attention on the importance and research progress of fibrous porous materials in the field of stealth protection, so as to solve the problems and challenges of fibrous porous materials in the field of stealth protection and to promote the further innovation of fibrous porous materials in terms of structure and function.

15.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931596

RESUMO

Porous materials possess advantages such as rich pore structures, a large surface area, low relative density, high specific strength, and good breathability. They have broad prospects in the development of a high-performance Triboelectric Nanogenerator (TENG) and self-powered sensing fields. This paper elaborates on the structural forms and construction methods of porous materials in existing TENG, including aerogels, foam sponges, electrospinning, 3D printing, and fabric structures. The research progress of porous materials in improving TENG performance is systematically summarized, with a focus on discussing design strategies of porous structures to enhance the TENG mechanical performance, frictional electrical performance, and environmental tolerance. The current applications of porous-material-based TENG in self-powered sensing such as pressure sensing, health monitoring, and human-machine interactions are introduced, and future development directions and challenges are discussed.

16.
Small ; : e2403331, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898749

RESUMO

Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.

17.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727352

RESUMO

Nanoporous gold (np-Au) has found its use in applications ranging from catalysis to biosensing, where pore morphology plays a critical role in performance. While the morphology evolution of bulk np-Au has been widely studied, knowledge about its thin-film form is limited. This work hypothesizes that the mechanical compliance of the thin film substrate can play a critical role in the morphology evolution. Via experimental and finite-element-analysis approaches, we investigate the morphological variation in np-Au thin films deposited on compliant silicone (PDMS) substrates of a range of thicknesses anchored on rigid glass supports and compare those to the morphology of np-Au deposited on glass. More macroscopic (10 s to 100 s of microns) cracks and discrete islands form in the np-Au films on PDMS compared to on glass. Conversely, uniformly distributed microscopic (100 s of nanometers) cracks form in greater numbers in the np-Au films on glass than those on PDMS, with the cracks located within the discrete islands. The np-Au films on glass also show larger ligament and pore sizes, possibly due to higher residual stresses compared to the np-Au/PDMS films. The effective elastic modulus of the substrate layers decreases with increasing PDMS thickness, resulting in secondary np-Au morphology effects, including a reduction in macroscopic crack-to-crack distance, an increase in microscopic crack coverage, and a widening of the microscopic cracks. However, changes in the ligament/pore widths with PDMS thickness are negligible, allowing for independent optimization for cracking. We expect these results to inform the integration of functional np-Au films on compliant substrates into emerging applications, including flexible electronics.

18.
Heliyon ; 10(10): e31339, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813151

RESUMO

Lead-acid batteries are noted for simple maintenance, long lifespan, stable quality, and high reliability, widely used in the field of energy storage. However, during the use of lead-acid batteries, the negative electrode is prone to irreversible sulfation, failing to meet the requirements of new applications such as maintenance-free hybrid vehicles and solar energy storage. In this study, in order to overcome the sulfation problem and improve the cycle life of lead-acid batteries, active carbon (AC) was selected as a foaming agent and foam fixing agent, and carbon foams (CF) with layered porous structure was prepared by mixing with molten sucrose. Sucrose as raw material is green and cheap, and the material preparation process is simple. The prepared CF material was then added as an additive to the negative electrode plate, and the electrochemical performance of the electrode plate and the battery was studied. The results proved that the addition of CF could effectively inhibit the sulfate formation of the negative electrode plate, with the 1.0 % CF negative electrode plate showing the best electrochemical performance. Specifically, according to the result of battery cycle testing, the simulated battery with CF had a cycle life of 3642 times, which was 2.87 times that of the blank group and 2.39 times of the AC group. Meanwhile, rate testing showed that the simulated battery with CF could maintain a high capacity even under high-rate discharge conditions.

19.
J Hazard Mater ; 472: 134566, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743973

RESUMO

Three-dimensional separation materials with robust physical/chemical stability have great demand for effective and continuous separation of immiscible oil/water mixtures and water-in-oil emulsions, resulting from chemical leakages and discharge of industrial oily wastewaters. Herein, a superelastic polystyrene-based porous material with superhydrophobicity/superoleophilicity was designed and prepared by high internal phase emulsion polymerization to meet the aforementioned requirements. A flexible and hydrophobic aminopropyl terminated polydimethylsiloxane (NH2-PDMS-NH2) segment was introduced into the rigid styrene-divinylbenzene copolymer through 1, 4-conjugate addition reaction with trimethylolpropane triacrylate. The addition of NH2-PDMS-NH2 simultaneously improved the mechanical and hydrophobic properties of the porous material (the water contact angle from 141.2° to 152.2°). The material exhibited outstanding reversible compressibility (80% strain, even in liquid N2 environments) and superhydrophobic stability, even after being repeatedly compressed 100 times, water contact angle still remained above 150°. Meanwhile, the as-prepared material had outstanding hydrophobic stability in corrosive solutions (strong acidic, alkaline, high-salty, and even strong polar solvent), presence of mechanical interference, strong UV radiations, and high/low temperature environments. More importantly, the material could continuously and efficiently separate immiscible oil/water mixture and water-in-oil emulsions under the above conditions, showing huge potential for the large-scale remediation of complex oily wastewaters.

20.
Int J Biol Macromol ; 268(Pt 2): 131944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692531

RESUMO

Efficient removal and recycling of phosphorus from complex water matrices using environmentally friendly and sustainable materials is essential yet challenging. To this end, a novel bio-based adsorbent (DX-FcA-CS) was developed by coupling oxidized dextran-crosslinked chitosan with ferrocene carboxylic acid (FcA). Detailed characterization revealed that the incorporation of FcA reduced the total pore area of DX-FcA-CS to 7.21 m2·g-1, one-third of ferrocene-free DX-CS (21.71 m2·g-1), while enhancing thermal stability and PO43- adsorption performance. Adsorption kinetics and isotherm studies demonstrated that the interaction between DX-FcA-CS and PO43- followed a pseudo-second-order kinetic model and Langmuir model, indicating chemical and monolayered adsorption mechanisms, respectively. Moreover, DX-FcA-CS exhibited excellent anti-interference properties against concentrated co-existing inorganic ions and humic acid, along with high recyclability. The maximum adsorption capacity reached 1285.35 mg·g-1 (∼428.45 mg P g-1), three times that of DX-CS and surpassing many other adsorbents. PO43--loaded DX-FcA-CS could be further carbonized into electrode material due to its rich content of phosphorus and nitrogen, transforming waste into a valuable resource. These outstanding characteristics position DX-FcA-CS as a promising alternative for phosphate capture and recycling. Overall, this study presents a viable approach to designing environmentally friendly, recyclable, and cost-effective biomaterial for wastewater phosphate removal and value-added applications.


Assuntos
Quitosana , Fosfatos , Quitosana/química , Adsorção , Porosidade , Fosfatos/química , Cinética , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Águas Residuárias/química , Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA