RESUMO
For better decisions in social interactions, humans often must understand the thinking of others and predict their actions. Since such predictions are uncertain, multiple predictions may be necessary for better decision-making. However, the neural processes and computations underlying such social decision-making remain unclear. We investigated this issue by developing a behavioral paradigm and performing functional magnetic resonance imaging and computational modeling. In our task, female and male participants were required to predict others' choices in order to make their own value-based decisions, as the outcome depended on others' choices. Results showed, to make choices, the participants mostly relied on a value difference (primary) generated from the case where others would make a likely choice, but sometimes they additionally used another value difference (secondary) from the opposite case where others make an unlikely choice. We found that the activations in the posterior cingulate cortex (PCC) correlated with the primary difference while the activations in the right dorsolateral prefrontal cortex (rdlPFC) correlated with the secondary difference. Analysis of neural coupling and temporal dynamics suggested a three-step processing network, beginning with the left amygdala signals for predictions of others' choices. Modulated by these signals, the PCC and rdlPFC reflect the respective value differences for self-decisions. Finally, the medial prefrontal cortex integrated these decision signals for a final decision. Our findings elucidate the neural process of constructing value-based decisions by predicting others and illuminate their key variables with social modulations, providing insight into the differential functional roles of these brain regions in this process.
Assuntos
Encéfalo , Comportamento de Escolha , Tomada de Decisões , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Tomada de Decisões/fisiologia , Adulto , Adulto Jovem , Comportamento de Escolha/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagemRESUMO
Objective: Early life experiences, including attachment-related experiences, inform internal working models that guide adult relationship behaviors. Few studies have examined the association between adolescent attachment and adult relationship behavior on a neural level. The current study examined attachment in adolescence and its associations with neural correlates of relationship behaviors in adulthood. Method: 85 participants completed the Adult Attachment Interview (AAI) at age 14. Ten years later, at age 24, participants underwent functional brain image when participants were under the threat of electric shock alone, holding the hand of a stranger, or their partner. Results: We found that adolescents who were securely attached at age 14 showed increased activation in regions commonly associated with cognitive, affective, and reward processing when they held the hand of their partner and stranger compared to being alone. Adolescents with higher preoccupied attachment scores showed decreased activation in similar regions only during the stranger handholding condition compared to being alone. Conclusions: These findings suggest that adolescent attachment predicts adult social relationship behaviors on a neural level, in regions largely consistent with previous literature. Broadly, this study has implications for understanding long-term links between attachment and adult relationship behaviors and has potential for informing intervention.
RESUMO
The posterior cingulate cortex (PCC) is a key hub of the default mode network and is known to play an important role in attention. Using ultra-high field 7 Tesla magnetic resonance spectroscopy (MRS) to quantify neurometabolite concentrations, this exploratory study investigated the effect of the concentrations of myo-inositol (Myo-Ins), glutamate (Glu), glutamine (Gln), aspartate or aspartic acid (Asp) and gamma-amino-butyric acid (GABA) in the PCC on attention in forty-six healthy participants. Each participant underwent an MRS scan and cognitive testing, consisting of a trail-making test (TMT A/B) and a test of attentional performance. After a multiple regression analysis and bootstrapping for correction, the findings show that Myo-Ins and Asp significantly influence (p < 0.05) attentional tasks. On one hand, Myo-Ins shows it can improve the completion times of both TMT A and TMT B. On the other hand, an increase in aspartate leads to more mistakes in Go/No-go tasks and shows a trend towards enhancing reaction time in Go/No-go tasks and stability of alertness without signal. No significant (p > 0.05) influence of Glu, Gln and GABA was observed.
Assuntos
Atenção , Giro do Cíngulo , Espectroscopia de Ressonância Magnética , Humanos , Atenção/fisiologia , Masculino , Feminino , Adulto , Espectroscopia de Ressonância Magnética/métodos , Giro do Cíngulo/metabolismo , Adulto Jovem , Ácido Glutâmico/metabolismo , Inositol/metabolismo , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/análiseRESUMO
N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether Parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.
Assuntos
Ácido Aspártico , Colina , Disfunção Cognitiva , Creatina , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico por imagem , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Creatina/metabolismo , Colina/metabolismo , Pessoa de Meia-Idade , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Tálamo/metabolismo , Tálamo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Testes NeuropsicológicosRESUMO
It is crucial to understand how anesthetics disrupt information transmission within the whole-brain network and its hub structure to gain insight into the network-level mechanisms underlying propofol-induced sedation. However, the influence of propofol on functional integration, segregation, and community structure of whole-brain networks were still unclear. We recruited 12 healthy subjects and acquired resting-state functional magnetic resonance imaging data during 5 different propofol-induced effect-site concentrations (CEs): 0, 0.5, 1.0, 1.5, and 2.0 µg/ml. We constructed whole-brain functional networks for each subject under different conditions and identify community structures. Subsequently, we calculated the global and local topological properties of whole-brain network to investigate the alterations in functional integration and segregation with deepening propofol sedation. Additionally, we assessed the alteration of key nodes within the whole-brain community structure at each effect-site concentrations level. We found that global participation was significantly increased at high effect-site concentrations, which was mediated by bilateral postcentral gyrus. Meanwhile, connector hubs appeared and were located in posterior cingulate cortex and precentral gyrus at high effect-site concentrations. Finally, nodal participation coefficients of connector hubs were closely associated to the level of sedation. These findings provide valuable insights into the relationship between increasing propofol dosage and enhanced functional interaction within the whole-brain networks.
Assuntos
Encéfalo , Hipnóticos e Sedativos , Imageamento por Ressonância Magnética , Propofol , Humanos , Propofol/farmacologia , Propofol/administração & dosagem , Masculino , Imageamento por Ressonância Magnética/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Feminino , Hipnóticos e Sedativos/farmacologia , Adulto Jovem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Anestésicos Intravenosos/farmacologia , Mapeamento Encefálico/métodosRESUMO
The purpose of this study was to assess the functional connectivity of the posterior cingulate cortex in autism spectrum disorder (ASD). We used resting-state functional magnetic resonance imaging (rsfMRI) brain scans of adolescents diagnosed with ASD and a neurotypical control group. The Autism Brain Imaging Data Exchange (ABIDE) consortium was utilized to acquire data from the University of Michigan (145 subjects) and data from the New York University (183 subjects). The posterior cingulate cortex showed reduced connectivity with the anterior cingulate cortex for the ASD group compared to the control group. These two brain regions have previously both been linked to ASD symptomology. Specifically, the posterior cingulate cortex has been associated with behavioral control and executive functions, which appear to be responsible for the repetitive and restricted behaviors (RRB) in ASD. Our findings support previous data indicating a neurobiological basis of the disorder, and the specific functional connectivity changes involving the posterior cingulate cortex and anterior cingulate cortex may be a potential neurobiological biomarker for the observed RRBs in ASD.
Assuntos
Transtorno do Espectro Autista , Giro do Cíngulo , Imageamento por Ressonância Magnética , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Adolescente , Feminino , Criança , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagemRESUMO
Human experience is imbued by the sense of being an embodied agent. The investigation of such basic self-consciousness has been hampered by the difficulty of comprehensively modulating it in the laboratory while reliably capturing ensuing subjective changes. The present preregistered study fills this gap by combining advanced meditative states with principled phenomenological interviews: 46 long-term meditators (19 female, 27 male) were instructed to modulate and attenuate their embodied self-experience during magnetoencephalographic monitoring. Results showed frequency-specific (high-beta band) activity reductions in frontoparietal and posterior medial cortices (PMC). Importantly, PMC reductions were driven by a subgroup describing radical embodied self-disruptions, including suspension of agency and dissolution of a localized first-person perspective. Neural changes were correlated with lifetime meditation and interview-derived experiential changes, but not with classical self-reports. The results demonstrate the potential of integrating in-depth first-person methods into neuroscientific experiments. Furthermore, they highlight neural oscillations in the PMC as a central process supporting the embodied sense of self.
Assuntos
Ritmo beta , Magnetoencefalografia , Meditação , Humanos , Feminino , Masculino , Meditação/psicologia , Meditação/métodos , Adulto , Ritmo beta/fisiologia , Pessoa de Meia-Idade , Córtex Cerebral/fisiologia , AutoimagemRESUMO
Patients with mild cognitive impairment (MCI) have a relatively high risk of developing Alzheimer's dementia (AD), so early identification of the risk for AD conversion can lessen the socioeconomic burden. In this study, 18F-Florapronol, newly developed in Korea, was used for qualitative and quantitative analyses to assess amyloid positivity. We also investigated the clinical predictors of the progression from MCI to dementia over 2 years. From December 2019 to December 2022, 50 patients with MCI were recruited at a single center, and 34 patients were included finally. Based on visual analysis, 13 (38.2%) of 34 participants were amyloid-positive, and 12 (35.3%) were positive by quantitative analysis. Moreover, 6 of 34 participants (17.6%) converted to dementia after a 2-year follow-up (p = 0.173). Among the 15 participants who were positive for amyloid in the posterior cingulate region, 5 (33.3%) patients developed dementia (p = 0.066). The Clinical Dementia Rating-Sum of Boxes (CDR-SOB) at baseline was significantly associated with AD conversion in multivariate Cox regression analyses (p = 0.043). In conclusion, these results suggest that amyloid positivity in the posterior cingulate region and higher CDR-SOB scores at baseline can be useful predictors of AD conversion in patients with MCI.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Progressão da Doença , Neuroimagem , Tomografia por Emissão de Pósitrons , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , República da Coreia , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Pessoa de Meia-IdadeRESUMO
Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.
Assuntos
Nível de Alerta , Encéfalo , Cognição , Conectoma , Imageamento por Ressonância Magnética , Descanso , Humanos , Nível de Alerta/fisiologia , Cognição/fisiologia , Masculino , Feminino , Conectoma/métodos , Adulto , Descanso/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagemRESUMO
The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.
Assuntos
Cognição , Estimulação Encefálica Profunda , Hipocampo , Lobo Parietal , Ritmo Teta , Estimulação Encefálica Profunda/métodos , Ritmo Teta/fisiologia , Hipocampo/fisiologia , Masculino , Humanos , Lobo Parietal/fisiologia , Cognição/fisiologia , Memória Episódica , Feminino , Giro do Cíngulo/fisiologia , AdultoRESUMO
The default mode network (DMN) is atypically active in patients with ADHD, likely contributing to the inattention patterns observed in patients with the disorder. Nonetheless, magnetic resonance spectroscopy (MRS) studies have rarely targeted the posterior cingulate cortex, a key DMN region, and little is known about the biochemical setting within this network in patients with ADHD. We aimed to assess the differences in metabolite profiles of the posterior cingulate cortex-a key region of the DMN-between patients with ADHD and controls. Five brain metabolites-glutamate, inositol, N-acetyl aspartate, choline, and creatine-were measured through MRS in the posterior cingulate cortex of patients and controls in a 3.0 T scanner. Between-group comparison of neurometabolite concentrations in PCC was performed using multivariate analysis of covariance. A total of 88 patients and 44 controls were included in the analysis. Patients with ADHD showed lower levels of glutamate in the posterior cingulate cortex compared to controls (p = 0.003). Lower concentrations of glutamate in the posterior cingulate cortex suggest that a glutamatergic imbalance within the posterior cingulate cortex might play a role in the pathogenesis of ADHD. Further understanding of the causes and consequences of such glutamate decrease might help explain how some glutamate-related drug effects impact on ADHD symptomatology.
RESUMO
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
RESUMO
This study elucidated the brain regions associated with the perception-driven suppression of mental imagery generation by comparing brain activation in a picture observation condition with that in a positive imagery generation condition. The assumption was that mental imagery generation would be suppressed in the former condition but not in the latter. The results show significant activation of the left posterior cingulate gyrus (PCgG) in the former condition compared to in the latter condition. This finding is generally consistent with a previous study showing that the left PCgG suppresses mental imagery generation. Furthermore, correlational analyses showed a significant correlation between the activation of the left PCgG and participants' subjective richness ratings, which are a measure of the clarity of a presented picture. Increased activity in the PCgG makes it more difficult to generate mental imagery. As visual perceptual processing and visual imagery generation are in competition, the suppression of mental imagery generation leads to enhanced visual perceptual processing. In other words, the greater the suppression of mental imagery, the clearer the presented pictures are perceived. The significant correlation found is consistent with this idea. The current results and previous studies suggest that the left PCgG plays a role in suppressing the generation of mental imagery.
RESUMO
Cue reactivity is relevant across addictive disorders as a process relevant to maintenance, relapse, and craving. Understanding the neurobiological foundations of cue reactivity across substance and behavioral addictions has important implications for intervention development. The present study used intrinsic connectivity distribution methods to examine functional connectivity during a cue-exposure fMRI task involving gambling, cocaine and sad videos in 22 subjects with gambling disorder, 24 with cocaine use disorder, and 40 healthy comparison subjects. Intrinsic connectivity distribution implicated the posterior cingulate cortex (PCC) at a stringent whole-brain threshold. Post-hoc analyses investigating the nature of the findings indicated that individuals with gambling disorder and cocaine use disorder exhibited decreased connectivity in the posterior cingulate during gambling and cocaine cues, respectively, as compared to other cues and compared to other groups. Brain-related cue reactivity in substance and behavioral addictions involve PCC connectivity in a content-to-disorder specific fashion. The findings suggesting that PCC-related circuitry underlies cue reactivity across substance and behavioral addictions suggests a potential biomarker for targeting in intervention development.
Assuntos
Transtornos Relacionados ao Uso de Cocaína , Sinais (Psicologia) , Jogo de Azar , Giro do Cíngulo , Imageamento por Ressonância Magnética , Humanos , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Masculino , Jogo de Azar/fisiopatologia , Jogo de Azar/psicologia , Adulto , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Adulto Jovem , Fissura/fisiologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagemRESUMO
Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which in turn modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (N=149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.
RESUMO
Introduction: Several neuroimaging studies have been conducted to demonstrate the specific structural and functional brain correlations of conversion disorder. Although the findings of neuroimaging studies are not consistent, when evaluated as a whole, they suggest the presence of significant brain abnormalities. The aim of this study is to investigate brain metabolic activity through F-18 fluorodeoxyglucose PET/MRI in order to shed light on the neural correlates of conversion disorder. Methods: 20 patients diagnosed with conversion disorder were included in the study. Hamilton Depression and Anxiety Rating Scales, Somatosensory Amplification Scale and Somatoform Dissociation Scale were administered. Then, brain F-18 FDG-PET/MRI was performed.. Results: Hypermetabolism was found in posterior cingulate R, while glucose metabolisms of other brain regions were observed to be within the normal limits. When compared with the control group, statistically significant differences in z-scores were observed among all brain regions except for parietal superior R and cerebellum. No correlation was observed between the metabolisms of the left ACC and left medial PFC; left ACC and left temporal lateral cortex; cerebellum and left parietal inferior cortex despite the presence of positive correlations between these regions in the opposite hemisphere. Discussion: Results of the study suggest a potential involvement of the DMN which is associated with arousal and self-referential processing as well as regions associated with motor intention and self-agency.
RESUMO
In the retrosplenial cortex (RSC), the role of cholinergic modulation via α7 nicotinic receptors and their involvement in memory is unknown. In recent years, the RSC has been shown to deteriorate in the early stages of Alzheimer's disease (AD). Likewise, the cholinergic system has been postulated as one of those responsible for cognitive impairment in patients with AD. Great interest has arisen in the study of α7 nicotinic receptors as more specific targets for the treatment of this disease. For this reason, we aim to study the role of α7 receptors of the RSC in memory processing. We infused a selective α7 receptor antagonist into the anterior part of the RSC (aRSC) to assess its role in different phases of aversive memory processing using an inhibitory avoidance task. We found that α7 nicotinic receptors are involved in memory acquisition and expression, but not in its consolidation. These results identify aRSC α7 nicotinic receptors as key players in aversive memory processing and highlight their significant potential as therapeutic targets for Alzheimer's disease.
RESUMO
Research into the health benefits of scents is on the rise. However, little is known about the effects of continuous inhalation, such as wearing scents on clothing, on brain structure. Therefore, in this study, an intervention study was conducted on a total of 50 healthy female people, 28 in the intervention group and 22 in the control group, asking them to wear a designated rose scent on their clothes for a month. The effect of continuous inhalation of essential oil on the gray matter of the brain was measured by calculating changes in brain images of participants taken before and after the intervention using Magnetic Resonance Imaging (MRI). The results showed that the intervention increased the gray matter volume (GMV) of the whole brain and posterior cingulate cortex (PCC) subregion. On the other hand, the GMV of the amygdala and orbitofrontal cortex (OFC) did not change. This study is the first to show that continuous scent inhalation changes brain structure.
Assuntos
Substância Cinzenta , Óleos Voláteis , Humanos , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Óleos Voláteis/farmacologia , Córtex Cerebral , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Imageamento por Ressonância MagnéticaRESUMO
Amyloid-ß (Aß) and tau are important biomarkers to predict the progression of cognitively unimpaired (CU) to dementia due to Alzheimer's disease (AD), according to the diagnosis framework from the US National Institute on Aging and the Alzheimer's Association (NIA-AA). However, it is clinically difficult to predict those subjects who were already with Aß positive (A +) or tau positive (T +). As a typical characteristic of neurodegeneration in the diagnosis framework, the hypometabolism of the posterior cingulate cortex (PCC) has significant clinical value in the early prediction and prevention of AD. In this paper, we proposed the glucose metabolism in the PCC as a biomarker supplement to Aß and tau biomarkers. First, we calculated the standard uptake value ratio (SUVR) of PCC based on fluorodeoxyglucose positron emission computed tomography (FDG PET) imaging. Secondly, we performed Kaplan-Meier (KM) survival analyses to explore the predictive performance of PCC SUVR, and the hazard ratio (HR) was calculated. Finally, we performed Pearson correlation analyses to explore the physiological significance of PCC SUVR. As a result, the PCC SUVR showed a consistent downward trend along the AD continuum. KM analyses showed better predictive performance when we combined PCC SUVR with cerebro-spinal fluid (CSF) Aß42 (from HR = 2.56 to 3.00 within 5 years; from HR = 2.76 to 4.20 within 10 years) and ptau-181 (from 2.83 to 3.91 within 5 years; from HR = 2.32 to 4.17 within 10 years). There was a slight correlation between Aß42/Aß40 and PCC SUVR (r = 0.14, p = 0.02). In addition, several cognition scales were also correlated to PCC SUVR (from r = -0.407 to 0.383, p < 0.05). Our results showed that glucose metabolism in PCC may be a potential biomarker supplement to the Aß and tau biomarkers to predict the progression of CU to AD.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Glucose/metabolismoRESUMO
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.