RESUMO
Introduction: Information about analyte stability is of crucial importance. The aims of this study were to determine the short- and long-term stability of synovial fluid calprotectin at various temperature conditions (4-8 °C for 7 days, - 20 °C and - 80 °C for 6 weeks). Materials and methods: Eleven samples from patients were included in this study. The samples were promptly transported at room temperature (RT) to the laboratory immediately after arthrocentesis. Upon arrival, the samples were transferred into plastic tubes without additives and pretreated with hyaluronidase solution. After centrifugation at 1500xg for 10 minutes at RT, the baseline calprotectin concentrations were determined. Seven aliquots were stored in LoBind tubes (Eppendorf) at 4-8 °C and the calprotectin was measured every day. Six additional aliquots were stored at temperatures - 20 °C and - 80 °C and the concentration of calprotectin was measured weekly. Analysis was done using Buhlmann fCAL turbo reagent on analyzer Siemens Atellica Solution (Siemens Healthcare, Erlangen, Germany). Data were analyzed by Microsoft Excel and MedCalc statistical software. The percentage difference (PD%) was calculated. The maximum permissible difference (MPD) was 9.1% for PD%. Results: The PD% with the corresponding 95% confidence intervals were inside the predefined MPD. The instability equations and correlation coefficient for storage temperatures were PD% = 0.1644 x time (day), r = 0.06, P = 0.614 for 4-8°C, PD% = 0.5190 x time (week), r = - 0.22, P = 0.080 for - 20°C, and PD% = 0.1316 x time (week), r = 0.08, P = 0.545 for - 80°C. Conclusions: The calprotectin in the synovial fluid is stable when stored long-term for 6 weeks at - 20 °C or at - 80 °C or short-term (7 days) at 4-8 °C.
Assuntos
Complexo Antígeno L1 Leucocitário , Líquido Sinovial , Humanos , Complexo Antígeno L1 Leucocitário/análise , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Temperatura , Estabilidade Proteica , Fatores de TempoRESUMO
Alkaptonuria is characterized by the accumulation of homogentisic acid which causes dark coloration of urine upon standing, ochronosis, and arthritis. A 4-year old child was referred to our pediatric nephrologist with hyperoxaluria and a history of unexplained pink-to-brown discolouration of his diapers associated with a brown-staining of clothes and skin since he was six months old. He had no other symptoms and his past medical history only included minor child illnesses. His 11-month-old brother had the same dark discoloration of his diapers. Laboratory testing on a spot urine sample showed hyperoxaluria and nephrotic range proteinuria with low creatinine and normal albumin concentrations. Considered causes were hyperoxaluria, alkaptonuria, interfering substance, adulteration. The further diagnostic work-up revealed increased homogentisic acid in urine, compatible with alkaptonuria. Urinary creatinine and total protein measurements on Roche Cobas were, respectively, falsely decreased and increased in the presence of homogentisic acid. The false-low creatinine resulted in an elevated oxalate/creatinine ratio. Alkaptonuria can cause a false increase of results expressed per creatinine and should be excluded in case of an unexplained marked increase of urine total protein without a concomitant increase of albumin.
Assuntos
Alcaptonúria , Ácido Homogentísico , Hiperoxalúria , Proteinúria , Humanos , Alcaptonúria/diagnóstico , Alcaptonúria/urina , Ácido Homogentísico/urina , Masculino , Proteinúria/urina , Hiperoxalúria/urina , Hiperoxalúria/diagnóstico , Pré-Escolar , Creatinina/urinaRESUMO
Introduction: Reliable and accurate measurement of blood glucose concentration is of crucial importance for making clinical decisions in diagnosis diabetes, gestational diabetes and impaired fasting glucose tolerance. Materials and methods: Survey was performed in form of questionnaire. Questionnaire was sent to all Croatian laboratories (N = 204) in electronic form using SurveyMonkey cloud-based software (SurveyMonkey, Inc., San Mateo, USA) as an extra-analytical module of the Croatian EQA (External Quality Assessment) provider Croatian center for external quality assessment (CROQALM) in June 2023. Results: In total 148 (73%) of laboratories responded to the survey. Large proportion of laboratories never use glucose inhibitor tubes for random glucose measurement (more than half) or for glucose function tests (one quarter). Only three laboratories use recommended glycolysis inhibitor citrate. Many other inhibitors are also used, even if some of them are not recommended for plasma glucose measurement. Glucose is almost never (93%) sampled on ice when glucose inhibitor tube is not available. Conclusions: Laboratories in Croatia do not follow the recommended procedures regarding glycolysis inhibitors for glucose determination.
Assuntos
Glicemia , Humanos , Croácia , Glicemia/análise , Inquéritos e Questionários , GravidezRESUMO
OBJECTIVES: Laboratory testing, crucial for medical diagnosis, has 3 phases: preanalytical, analytical, and postanalytical. This study set out to demonstrate whether automating tube labeling through artificial intelligence (AI) support enhances efficiency, reduces errors, and improves outpatient phlebotomy services. METHODS: The NESLI tube-labeling robot (Labenko Informatics), which uses AI models for tube selection and handling, was used for the experiments. The study evaluated the NESLI robot's operational performance, including labelling time, technical problems, tube handling success, and critical stock alerts. The robot's label readability was also tested on various laboratory devices. This research will contribute to the field's understanding of the potential impact of automated tube-labeling systems on laboratory processes in the preanalytical phase. RESULTS: NESLI demonstrated high performance in labeling processes, achieving a success rate of 99.2% in labeling parameters and a success rate of 100% in other areas. For nonlabeling parameters, the average labeling time per tube was measured at 8.96 seconds, with a 100% success rate in tube handling and critical stock warnings. Technical issues were promptly resolved, affirming the NESLI robot's effectiveness and reliability in automating the tube-labeling processes. CONCLUSIONS: Robotic systems using AI, such as NESLI, have the potential to increase process efficiency and reduce errors in the preanalytical phase of laboratory testing. Integration of such systems into comprehensive information systems is crucial for optimizing phlebotomy services and ensuring timely and accurate diagnostics.
RESUMO
Introduction: Adrenocorticotropic hormone (ACTH) is a peptide secreted by pituitary gland that plays an important role in regulating cortisol secretion. Its determination is difficult because of instability in whole blood. Several factors that influence ACTH stability in blood before analysis have been identified: temperature, hemolysis, time to centrifugation and presence of protease inhibitors. Published results on ACTH whole blood stability seem contradictory. Materials and methods: We performed a stability study in 10 healthy volunteers. Three different conditions were tested: ethylenediaminetetraacetic acid (EDTA) at 4 °C, EDTA + aprotinin at 4 °C, EDTA + aprotinin at room temperature. Stability was evaluated for 8 hours. Adrenocorticotropic hormone measurements and hemolysis index were performed respectively on Cobas e602 and c701 (Roche Diagnostics, Mannheim, Germany). We compared percentage deviations with total change limit using a threshold of 7.5%. Results: We showed that ACTH is stable 8 hours with EDTA at 4 °C, 4 hours with EDTA + aprotinin at 4 °C and 2 hours with EDTA + aprotinin at 22 °C. Conclusions: Aprotinin does not appear to give ACTH greater stability but can be used without exceeding 4 hours at 4 °C. Refrigerated pouch transport also seems to be more appropriate for ACTH in whole blood.
Assuntos
Hormônio Adrenocorticotrópico , Ácido Edético , Humanos , Hormônio Adrenocorticotrópico/sangue , Masculino , Adulto , Ácido Edético/química , Ácido Edético/farmacologia , Feminino , Temperatura , Coleta de Amostras Sanguíneas/métodos , Hemólise , Aprotinina/farmacologia , Aprotinina/química , Manejo de Espécimes/métodos , Fatores de TempoRESUMO
Microribonucleic acids (miRNAs) have emerged as a new category of biomarkers for many human diseases like cancer, cardiovascular and neurodegenerative disorders. MicroRNAs can be detected in various body fluids including blood, urine and cerebrospinal fluid. However, the literature contains conflicting results for circulating miRNAs, which is the main barrier to using miRNAs as non-invasive biomarkers. This variability in results is largely due to differences between studies in sample processing methodology, miRNA quantification and result normalization. The purpose of this review is to describe the various preanalytical, analytical and postanalytical factors that can impact miRNA detection accuracy and to propose recommendations for the standardization of circulating miRNAs measurement.
Assuntos
MicroRNA Circulante , Humanos , MicroRNA Circulante/sangue , Biomarcadores/sangue , Fase Pré-Analítica , MicroRNAs/sangueRESUMO
Venous blood collection systems (VBCSs) are combinations of in-vitro diagnostics and medical devices, usually available as integrated set. However, purchasing and using a combination of devices from different sets is considered by clinical laboratories as an option to achieve specific sampling tasks or reduce costs. This systematic review aimed to retrieve available evidence regarding safety, efficacy, and economic aspects of VBCSs, focusing on differences between integrated and combined systems. The literature review was carried out in PubMed. Cited documents and resources made available by scientific organisations were also screened. Extracted evidence was clustered according to Quality/Efficacy/Performance, Safety, and Costs/Procurement domains and discussed in the current European regulatory framework. Twenty documents published between 2010 and 2021 were included. There was no evidence to suggest equivalence between combined and integrated VBCSs in terms of safety and efficacy. Scientific society's consensus documents and product standards report that combined VBCS can impact operators' and patients' safety. Analytical performances and overall efficacy of combined VBCSs are not guaranteed without whole system validation and verification. EU regulatory framework clearly allocates responsibilities for the validation and verification of an integrated VBCS, but not for combined VBCSs, lacking information about the management of product nonconformities and post-market surveillance. Laboratory validation of combined VBCS demands risk-benefit and cost-benefit analyses, a non-negligible organisational and economic burden, and investment in knowledge acquisition. Implications in terms of laboratory responsibility and legal liability should be part of a comprehensive assessment of safety, efficacy, and cost carried out during device procurement.
RESUMO
OBJECTIVES: The preanalytical phase in clinical laboratory diagnostics is currently receiving more and more attention. This term describes one part of actions and aspects of the "brain-to-brain cycle" of the medical laboratory diagnostic procedure that take place before the analytical phase. However, the preanalytical activities, the handling of unsuitable samples and the reporting procedures are neither fully standardized nor harmonized worldwide. The influence of the properties of the blood collection needle must be acknowledged. In this work, we focused on the investigation of the internal structure and size of standardized 21G blood collection needles. METHODS: All parameters were measured with a scanning electron microscope using a Jeol model JSM-6000PLUS. Our. RESULTS: The obtained data shows that the internal surfaces of the needles vary greatly from manufacturer to manufacturer (by around 35â¯%), and this may play an important role in influencing blood flow and even the risk of blood cell injury (especially hemolysis) during blood drawing. CONCLUSIONS: The differential actual needle diameters can vary greatly between needle manufactures and this variety may have a significant impact on laboratory values and may also lead to specimen rejection.
Assuntos
Coleta de Amostras Sanguíneas , Microscopia Eletrônica de Varredura , Agulhas , Humanos , Desenho de EquipamentoRESUMO
Introduction: The aim of this study was to determine the level of compliance of venous blood sampling (VBS) in Lithuania with the joint recommendations of the European Federation of Clinical Chemistry and Laboratory Medicine and the Latin American Confederation of Clinical Biochemistry (EFLM-COLABIOCLI) and to analyse possible causes of errors. A survey was conducted between April and September 2022. Materials and methods: A self-designed questionnaire was distributed to the Lithuanian National Societies. Error frequencies and compliance score were computed. Differences between groups were analysed using Pearson's chi-square, Fisher's exact criterion, Mann-Whitney U (for two groups), or Kruskal-Wallis (for more than two groups) for categorical and discrete indicators. The association between ordinal and discrete variables was assessed using Spearman's rank correlation coefficient. Statistical significance was determined at P < 0.05. Results: A total of 272 respondents completed the questionnaire. Median error rate and compliance score were 31.5% and 13/19, respectively. Significant differences were found among professional titles, standard operating procedures availability, training recency, and tourniquet purpose opinions. A negative correlation was noted between compliance and time since training (rs = - 0.28, P < 0.001). Conclusions: The findings of this study indicate that there is a significant need for improvement in compliance with the EFLM-COLABIOCLI recommendations on VBS among specialists in Lithuania. Essential measures include prioritizing ongoing phlebotomy training and establishing national guidelines. Harmonisation of blood collection practices across healthcare institutions is crucial.
Assuntos
Flebotomia , Humanos , Lituânia , Flebotomia/normas , Inquéritos e Questionários , Fidelidade a Diretrizes , Feminino , MasculinoRESUMO
Introduction: This study aimed to investigate the effects of lipemia on clinical chemistry and coagulation parameters in native ultralipemic (NULM) and intravenous lipid emulsion (IVLE) spiked samples. Materials and methods: The evaluation of biochemistry (photometric, ion-selective electrode, immunoturbidimetric method), cardiac (electrochemiluminescence immunoassay method) and coagulation (the viscosity-based mechanical method for prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen and the immunoturbidimetric method for D-dimer) parameters were conducted. In addition to the main pools, five pools were prepared for both types of lipemia, each with triglyceride (TG) concentrations of approximately 2.8, 5.7, 11.3, 17.0 and 22.6 mmol/L. All parameters' mean differences (MD%) were presented as interferographs and compared with the desirable specification for the inaccuracy (bias%). Data were also evaluated by repeated measures of ANOVA. Results: Prothrombin time and APTT showed no clinically relevant interference in IVLE-added pools but were negatively affected in NULM pools(P < 0.001 in both parameters). For biochemistry, the most striking difference was seen for CRP; it is up to 134 MD% value with NULM (P < 0.001) at the highest TG concentration, whereas it was up to - 2.49 MD% value with IVLE (P = 0.009). Albumin was affected negatively upward of 5.7 mmol/L TG with IVLE, while there was no effect for NULM. Creatinine displayed significant positive interferences with NULM starting at the lowest TG concentration (P = 0.028). There was no clinically relevant interference in cardiac markers for both lipemia types. Conclusions: Significant differences were scrutinized in interference patterns of lipemia types, emphasizing the need for careful consideration of lipemia interferences in clinical laboratories. It is crucial to note that lipid emulsions inadequately replicate lipemic samples.
Assuntos
Emulsões Gordurosas Intravenosas , Hiperlipidemias , Tempo de Protrombina , Humanos , Hiperlipidemias/sangue , Emulsões Gordurosas Intravenosas/química , Tempo de Tromboplastina Parcial , Triglicerídeos/sangue , Coagulação SanguíneaRESUMO
The use of artificial intelligence (AI) has become widespread in many areas of science and medicine, including laboratory medicine. Although it seems obvious that the analytical and post-analytical phases could be the most important fields of application in laboratory medicine, a kaleidoscope of new opportunities has emerged to extend the benefits of AI to many manual labor-intensive activities belonging to the pre-analytical phase, which are inherently characterized by enhanced vulnerability and higher risk of errors. These potential applications involve increasing the appropriateness of test prescription (with computerized physician order entry or demand management tools), improved specimen collection (using active patient recognition, automated specimen labeling, vein recognition and blood collection assistance, along with automated blood drawing), more efficient sample transportation (facilitated by the use of pneumatic transport systems or drones, and monitored with smart blood tubes or data loggers), systematic evaluation of sample quality (by measuring serum indices, fill volume or for detecting sample clotting), as well as error detection and analysis. Therefore, this opinion paper aims to discuss the state-of-the-art and some future possibilities of AI in the preanalytical phase.
RESUMO
Glucose measurement plays a central role in the diagnosis of gestational diabetes mellitus (GDM). Because of earlier reports of overestimation of glucose in the widely used tubes containing granulated glycolysis inhibitor, the study assessed the performance of fast-clotting serum tubes as an alternative sample for the measurement of glucose. Glucose concentration in fast-clotting serum was compared to lithium-heparin plasma placed in an ice-water slurry after sample collection and glucose stability at room-temperature was studied. Blood samples from 30 volunteers were drawn in four different types of tubes (serum separator tubes, fast-clotting serum tubes, lithium-heparin tubes and sodium fluoride, EDTA and a citrate buffer (NaF-EDTA-citrate) tubes, all from Greiner Bio-One). Lithium-heparin tubes were placed in an ice-water slurry until centrifugation in accordance with international recommendations and centrifuged within 10 min. After centrifugation, glucose was measured in all tubes (timepoint T0) and after 24, 48, 72, 96 and 120 h of storage at 20-22 °C. NaF-EDTA-citrate plasma showed significant overestimation of glucose concentration by 4.7% compared to lithium-heparin plasma; fast-clotting serum showed glucose concentrations clinically equivalent to lithium-heparin plasma. In fast-clotting serum tubes, mean bias between glucose concentration after 24, 48, 72, 96 and 120 h and T0 was less than 2.4%. All individual differences compared to T0 were less than 6.5%. The results fulfill the acceptance criteria for sample stability based on biological variation. Fast-clotting serum tubes can be an alternative for the measurement of glucose in diagnosis and management of GDM and diabetes mellitus, especially when prolonged transportation is necessary.
Assuntos
Diabetes Gestacional , Heparina , Gravidez , Feminino , Humanos , Glucose , Ácido Cítrico/farmacologia , Ácido Edético , Lítio , Glicemia , Temperatura , Gelo , Citratos , Coleta de Amostras Sanguíneas/métodos , Fluoreto de Sódio/farmacologia , Diabetes Gestacional/diagnóstico , CentrifugaçãoRESUMO
OBJECTIVES: Artificial intelligence-based robotic systems are increasingly used in medical laboratories. This study aimed to test the performance of KANKA (Labenko), a stand-alone, artificial intelligence-based robot that performs sorting and preanalytical quality control of blood tubes. METHODS: KANKA is designed to perform preanalytical quality control with respect to error control and preanalytical sorting of blood tubes. To detect sorting errors and preanalytical inappropriateness within the routine work of the laboratory, a total of 1000 blood tubes were presented to the KANKA robot in 7 scenarios. These scenarios encompassed various days and runs, with 5 repetitions each, resulting in a total of 5000 instances of sorting and detection of preanalytical errors. As the gold standard, 2 experts working in the same laboratory identified and recorded the correct sorting and preanalytical errors. The success rate of KANKA was calculated for both the accurate tubes and those tubes with inappropriate identification. RESULTS: KANKA achieved an overall accuracy rate of 99.98% and 100% in detecting tubes with preanalytical errors. It was found that KANKA can perform the control and sorting of 311 blood tubes per hour in terms of preanalytical errors. CONCLUSIONS: KANKA categorizes and records problem-free tubes according to laboratory subunits while identifying and classifying tubes with preanalytical inappropriateness into the correct error sections. As a blood acceptance and tube sorting system, KANKA has the potential to save labor and enhance the quality of the preanalytical process.
Assuntos
Inteligência Artificial , Controle de Qualidade , Robótica , Humanos , Robótica/normas , Coleta de Amostras Sanguíneas/instrumentação , Coleta de Amostras Sanguíneas/normas , Coleta de Amostras Sanguíneas/métodosRESUMO
OBJECTIVES: Many hospitals use pneumatic tube systems (PTS) for transport of diagnostic samples. Continuous monitoring of PTS and evaluation prior to clinical use is recommended. Data loggers with specifically developed algorithms have been suggested as an additional tool in PTS evaluation. We compared two different data loggers. METHODS: Transport types - courier, conventional (cPTS) and innovative PTS (iPTS) - were monitored using two data loggers (MSR145® logger, CiK Solutions GmbH, Karlsruhe, Germany, and a prototype developed at the University Medicine Greifswald). Data loggers differ in algorithm, recording frequencies and limit of acceleration detection. Samples from apparently healthy volunteers were split among the transport types and results for 37 laboratory measurands were compared. RESULTS: For each logger specific arbitrary units were calculated. Area-under-the-curve (AUC)-values (MSR145®) were lowest for courier and highest for iPTS and increased with increasing recording frequencies. Stress (St)-values (prototype logger) were obtained in kmsu (1,000*mechanical stress unit) and were highest for iPTS as well. Statistical differences between laboratory measurement results of transport types were observed for three measurands sensitive for hemolysis. CONCLUSIONS: The statistical, but not clinical, differences in the results for hemolysis sensitive measurands may be regarded as an early sign of preanalytical impairment. Both data loggers record this important interval of beginning mechanical stress with a high resolution indicating their potential to facilitate early detection of preanalytical impairment. Further studies should identify suitable recording frequencies. Currently, evaluation and monitoring of diagnostic sample transport should not only rely on data loggers but also include diagnostic samples.
Assuntos
Coleta de Amostras Sanguíneas , Hemólise , Humanos , Coleta de Amostras Sanguíneas/métodos , Estresse Mecânico , AlemanhaRESUMO
The analysis of blood alcohol concentration (BAC), a pivotal toxicological test, concerns acute alcohol intoxication (AAI) and driving under the influence (DUI). As such, BAC presents an organizational challenge for clinical laboratories, with unique complexities due to the need for forensic defensibility as part of the diagnostic process. Unfortunately, a significant number of scientific investigations dealing with the subject present discrepancies that make it difficult to identify optimal practices in sample collection, transportation, handling, and preparation. This review provides a systematic analysis of the preanalytical phase of BAC that aims to identify and explain the chemical, physiological, and pharmacological mechanisms underlying controllable operational factors. Nevertheless, it seeks evidence for the necessity to separate preanalytical processes for diagnostic and forensic BAC testing. In this regard, the main finding of this review is that no literature evidence supports the necessity to differentiate preanalytical procedures for AAI and DUI, except for the traceability throughout the chain of custody. In fact, adhering to correct preanalytical procedures provided by official bodies such as European federation of clinical chemistry and laboratory medicine for routine phlebotomy ensures both diagnostic accuracy and forensic defensibility of BAC. This is shown to depend on the capability of modern pre-evacuated sterile collection tubes to control major factors influencing BAC, namely non-enzymatic oxidation and microbial contamination. While certain restrictions become obsolete with such devices, as the use of sodium fluoride (NaF) for specific preservation of forensic BAC, this review reinforces the recommendation to use non-alcoholic disinfectants as a means to achieve "error-proof" procedures in challenging operational environments like the emergency department.
Assuntos
Concentração Alcoólica no Sangue , Fase Pré-Analítica , Humanos , Laboratórios Clínicos , Flebotomia/métodos , Manejo de EspécimesRESUMO
Background: Laboratories across the world are successfully using quality indicators (QIs) to monitor their performance. We aimed to analyze the effectiveness of using the peer group comparison and statistical tools such as sigma metrics for periodic evaluation of QIs and identify potential errors in the preanalytical, analytical, and postanalytical phases. Methods: We evaluated the monthly QIs for 1 year. A total of 11 QIs were evaluated across the three phases of the total testing process, using percentage variance, and sigma metric analysis. Results: Our study observed that based on sigma metric analysis, the performance was good for all the QIs except for the number of samples with the inappropriate specimen hemolyzed samples, clotted samples, and turnaround time (Sigma value < 3). The percentage variance of QIs in all the phases was plotted in a Pareto chart, which helped us in identifying turnaround time and internal quality control performance are the key areas that contribute to almost 80% of the errors among all the QIs. Conclusion: Laboratory performance evaluation using QIs and sigma metric analysis helped us in identifying and prioritizing the corrective actions in the key areas of the total testing process.
RESUMO
INTRODUCTION: The pneumatic tube system (PTS) is an automated and fast modality of transportation of biological samples, but it has been reported to induce preanalytical errors. AIM: To study the influence of transportation by PTS on biochemistry tests which are particularly sensitive to haemolysis and atmospheric pressure variation. MATERIALS AND METHODS: We compared laboratory results of arterial blood gas, sodium, potassium, chloride, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glucose and haemolysis index of samples conveyed simultaneously by PTS and by courier. RESULTS: We recruited 30 patients from the sampling room and 40 patients from the intensive care unit. Transport through PTS resulted in a significant increase in aspartate aminotransferase and potassium without exceeding the limits of acceptability. Potassium was significantly more increased for samples transported in a higher speed line (p = .048) but without exceeding the limits of acceptability. No significant impact was noted on haemolysis indices. The pO2 variations due to PTS transportation exceeded the limit of acceptability with significant intra-individual variations. CONCLUSION: Our PTS is validated for biochemistry tests results. It reduces turnaround times without affecting sample quality. However, the interpretation of arterial blood gas results should be careful for samples transported by PTS.