Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
Eur J Neurosci ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349382

RESUMO

The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 µm) to the LC core resulted in partial LC transduction, while proximal (< 50 µm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.

2.
Clin Neurophysiol ; 167: 1-11, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39232454

RESUMO

OBJECTIVE: Auditory and somatosensory prepulses are commonly used to assess prepulse inhibition (PPI). The effect of a vestibular prepulse upon blink reflex excitability has not been hitherto assessed. METHODS: Twenty-two healthy subjects and two patients with bilateral peripheral vestibular failure took part in the study. Whole body yaw rotation in the dark provided a vestibular inertial prepulse. Blink reflex was electrically evoked after the end of the rotation. The amplitude of R1 and the area-under-the-curve (area) of the blink reflex R2 and R2c responses were recorded and analysed. RESULTS: A vestibular prepulse inhibited the R2 (p < 0.001) and R2c area (p < 0.05). Increasing the angular acceleration did not increase the R2 and R2c inhibition (p > 0.05). Voluntary suppression of the vestibulo-ocular reflex did not affect the magnitude of inhibition (p > 0.05). Patients with peripheral vestibular failure did not show any inhibition. CONCLUSIONS: Our data support a vestibular gating mechanism in humans. SIGNIFICANCE: The main brainstem nucleus mediating PPI - the pedunculopontine nucleus (PPN) - is heavily vestibular responsive, which is consistent with our findings of a vestibular-mediated PPI. Our technique may be used to interrogate the fidelity of brain circuits mediating vestibular-related PPN functions. Given the PPN's importance in human postural control, our technique may also provide a neurophysiological biomarker of balance.

3.
Front Neurosci ; 18: 1446929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211433

RESUMO

Background: Prepulse inhibition (PPI) is a phenomenon where a weak prepulse stimulus inhibits the startle reflex to a subsequent stronger stimulus, which can be induced by various sensory stimulus modalities such as visual, tactile, and auditory stimuli. Methods: This study investigates the neural mechanisms underlying auditory PPI by focusing on the deep layers of the superior colliculus (deepSC) and the inferior colliculus (IC) in rats. Nineteen male Sprague-Dawley rats were implanted with electrodes in the left deepSC and the right IC, and electrophysiological recordings were conducted under anesthesia to observe the frequency following responses (FFRs) to startle stimuli with and without prepulse stimuli. Results: Our results showed that in the deepSC, narrowband noise as a prepulse stimulus significantly inhibited the envelope component of the startle response, while the fine structure component remained unaffected. However, this inhibitory effect was not observed in the IC or when the prepulse stimulus was a gap. Conclusion: These findings suggest that the deepSC plays a crucial role in the neural circuitry of PPI, particularly in the modulation of the envelope component of the startle response. The differential effects of narrowband noise and gap as prepulse stimuli also indicate distinct neural pathways for sound-induced PPI and Gap-PPI. Understanding these mechanisms could provide insights into sensory processing and potential therapeutic targets for disorders involving impaired PPI, such as tinnitus.

4.
Pharmacol Res ; 208: 107374, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197713

RESUMO

Brain functions are mediated via the complex interplay between several complex factors, and hence, identifying the underlying cause of an abnormality within a certain brain region can be challenging. In mitochondrial disease, abnormalities in brain function are thought to be attributed to accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations; however, only few previous studies have directly demonstrated that accumulation of mutant mtDNA induced abnormalities in brain function. Herein, we examined the effects of mtDNA mutations on brain function via behavioral analyses using a mouse model with an A2748G point mutation in mtDNA tRNALeu(UUR). Our results revealed that mice with a high percentage of mutant mtDNA showed a characteristic trend toward reduced prepulse inhibition and memory-dependent test performance, similar to that observed in psychiatric disorders, such as schizophrenia; however, muscle strength and motor coordination were not markedly affected. Upon examining the hippocampus and frontal lobes of the brain, mitochondrial morphology was abnormal, and the brain weight was slightly reduced. These results indicate that the predominant accumulation of a point mutation in the tRNALeu(UUR) gene may affect brain functions, particularly the coordination of sensory and motor functions and memory processes. These abnormalities probably caused by both direct effects of accumulation of the mutant mtDNA in neuronal cells and indirect effects via changes of systemic extracellular environments. Overall, these findings will lead to a better understanding of the pathogenic mechanism underlying this complex disease and facilitate the development of optimal treatment methods.


Assuntos
Encéfalo , DNA Mitocondrial , Mutação Puntual , Animais , DNA Mitocondrial/genética , Masculino , Encéfalo/metabolismo , RNA de Transferência de Leucina/genética , Camundongos Endogâmicos C57BL , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Inibição Pré-Pulso/genética , Memória , Comportamento Animal
5.
Front Hum Neurosci ; 18: 1436156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188409

RESUMO

Introduction: Startle habituation and prepulse inhibition (PPI) are distinct measures of different sensory information processes, yet both result in the attenuation of the startle reflex. Identifying startle habituation and PPI neural mechanisms in humans has mostly evolved from acoustic-focused rodent models. Human functional magnetic resonance imaging (fMRI) studies have used tactile startle paradigms to avoid the confounding effects of gradient-related acoustic noise on auditory paradigms and blood-oxygen-level-dependent (BOLD) measures. This study aimed to examine the neurofunctional basis of acoustic startle habituation and PPI in humans with silent fMRI. Methods: Using silent fMRI and simultaneous electromyography (EMG) to measure startle, the neural correlates of acoustic short-term startle habituation and PPI [stimulus onset asynchronies (SOA) of 60 ms and 120 ms] were investigated in 42 healthy adults (28 females). To derive stronger inferences about brain-behaviour correlations at the group-level, models included EMG-assessed measures of startle habituation (regression slope) or PPI (percentage) as a covariate. A linear temporal modulator was modelled at the individual-level to characterise functional changes in neural activity during startle habituation. Results: Over time, participants showed a decrease in startle response (habituation), accompanied by decreasing thalamic, striatal, insula, and brainstem activity. Startle habituation was associated with the linear temporal modulation of BOLD response amplitude in several regions, with thalamus, insula, and parietal lobe activity decreasing over time, and frontal lobe, dorsal striatum, and posterior cingulate activity increasing over time. The paradigm yielded a small amount of PPI (9-13%). No significant neural activity for PPI was detected. Discussion: Startle habituation was associated with the thalamus, putamen, insula, and brainstem, and with linear BOLD response modulation in thalamic, striatal, insula, parietal, frontal, and posterior cingulate regions. These findings provide insight into the mediation and functional basis of the acoustic primary startle circuit. Instead, whilst reduced compared to conventional MRI, scanner noise may have disrupted prepulse detection and processing, resulting in low PPI and impacting our ability to map its neural signatures. Our findings encourage optimisation of the MRI environment for acoustic PPI-based investigations in humans. Combining EMG and functional neuroimaging methods shows promise for mapping short-term startle habituation in healthy and clinical populations.

6.
Front Neurosci ; 18: 1452450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170684

RESUMO

Rodent models of tinnitus are commonly used to study its mechanisms and potential treatments. Tinnitus can be identified by changes in the gap-induced prepulse inhibition of the acoustic startle (GPIAS), most commonly by using pressure detectors to measure the whole-body startle (WBS). Unfortunately, the WBS habituates quickly, the measuring system can introduce mechanical oscillations and the response shows considerable variability. We have instead used a motion tracking system to measure the localized motion of small reflective markers in response to an acoustic startle reflex in guinea pigs and mice. For guinea pigs, the pinna had the largest responses both in terms of displacement between pairs of markers and in terms of the speed of the reflex movement. Smaller, but still reliable responses were observed with markers on the thorax, abdomen and back. The peak speed of the pinna reflex was the most sensitive measure for calculating GPIAS in the guinea pig. Recording the pinna reflex in mice proved impractical due to removal of the markers during grooming. However, recordings from their back and tail allowed us to measure the peak speed and the twitch amplitude (area under curve) of reflex responses and both analysis methods showed robust GPIAS. When mice were administered high doses of sodium salicylate, which induces tinnitus in humans, there was a significant reduction in GPIAS, consistent with the presence of tinnitus. Thus, measurement of the peak speed or twitch amplitude of pinna, back and tail markers provides a reliable assessment of tinnitus in rodents.

7.
Comput Methods Programs Biomed ; 255: 108371, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173295

RESUMO

BACKGROUND AND OBJECTIVE: Tinnitus is a neuropathological condition that results in mild buzzing or ringing of the ears without an external sound source. Current tinnitus diagnostic methods often rely on subjective assessment and require intricate medical examinations. This study aimed to propose an interpretable tinnitus diagnostic framework using auditory late response (ALR) and electroencephalogram (EEG), inspired by the gap-prepulse inhibition (GPI) paradigm. METHODS: We collected spontaneous EEG and ALR data from 44 patients with tinnitus and 47 hearing loss-matched controls using specialized hardware to capture responses to sound stimuli with embedded gaps. In this cohort study of tinnitus and control groups, we examined EEG spectral and ALR features of N-P complexes, comparing the responses to gap durations of 50 and 20 ms alongside no-gap conditions. To this end, we developed an interpretable tinnitus diagnostic model using ALR and EEG metrics, boosting machine learning architecture, and explainable feature attribution approaches. RESULTS: Our proposed model achieved 90 % accuracy in identifying tinnitus, with an area under the performance curve of 0.89. The explainable artificial intelligence approaches have revealed gap-embedded ALR features such as the GPI ratio of N1-P2 and EEG spectral ratio, which can serve as diagnostic metrics for tinnitus. Our method successfully provides personalized prediction explanations for tinnitus diagnosis using gap-embedded auditory and neurological features. CONCLUSIONS: Deficits in GPI alongside activity in the EEG alpha-beta ratio offer a promising screening tool for assessing tinnitus risk, aligning with current clinical insights from hearing research.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Zumbido , Humanos , Zumbido/fisiopatologia , Zumbido/diagnóstico , Eletroencefalografia/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Estimulação Acústica , Aprendizado de Máquina , Estudos de Casos e Controles , Estudos de Coortes , Idoso
8.
Hear Res ; 450: 109070, 2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972084

RESUMO

Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (p < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.


Assuntos
Estimulação Acústica , Vias Auditivas , Inibição Pré-Pulso , Reflexo de Sobressalto , Corpo Trapezoide , Animais , Inibição Pré-Pulso/fisiologia , Masculino , Corpo Trapezoide/metabolismo , Corpo Trapezoide/fisiologia , Vias Auditivas/fisiologia , Vias Auditivas/metabolismo , Ratos Sprague-Dawley , Saporinas/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1 , Potenciais Evocados Auditivos do Tronco Encefálico , Imunotoxinas , Nervo Coclear/metabolismo , Nervo Coclear/fisiologia , Ratos
9.
Neuropharmacology ; 258: 110064, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981578

RESUMO

Nonmedical use of prescription opioids peaks during late adolescence, a developmental period associated with the maturation of higher-order cognitive processes. To date, however, how chronic adolescent oxycodone (OXY) self-administration alters neurobehavioral (i.e., locomotion, startle reactivity) and/or neurocognitive (i.e., preattentive processes, intrasession habituation, stimulus-reinforcement learning, sustained attention) function has not yet been systematically evaluated. Hence, the rationale was built for establishing the dose-dependency of adolescent OXY self-administration on the trajectory of neurobehavioral and neurocognitive development. From postnatal day (PD) 35 to PD 105, an age in rats that corresponds to the adolescent and young adult period in humans, male and female F344/N rats received access to either oral OXY (0, 2, 5, or 10 mg/kg) or water under a two-bottle choice experimental paradigm. Independent of biological sex or dose, rodents voluntarily escalated their OXY intake across ten weeks. A longitudinal experimental design revealed prominent OXY-induced impairments in neurobehavioral development, characterized by dose-dependent increases in locomotion and sex-dependent increases in startle reactivity. Systematic manipulation of the interstimulus interval in prepulse inhibition supports an OXY-induced impairment in preattentive processes. Despite the long-term cessation of OXY intake, rodents with a history of chronic adolescent oral OXY self-administration exhibited deficits in sustained attention; albeit no alterations in stimulus-reinforcement learning were observed. Taken together, adolescent oral OXY self-administration induces selective long-term alterations in neurobehavioral and neurocognitive development enjoining the implementation of safer prescribing guidelines for this population.


Assuntos
Analgésicos Opioides , Oxicodona , Reflexo de Sobressalto , Autoadministração , Animais , Oxicodona/administração & dosagem , Oxicodona/efeitos adversos , Masculino , Feminino , Ratos , Administração Oral , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Reflexo de Sobressalto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cognição/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Atenção/efeitos dos fármacos
10.
Conscious Cogn ; 123: 103722, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981366

RESUMO

Startle modulation paradigms, namely habituation and prepulse inhibition (PPI), can offer insight into the brain's early information processing mechanisms that might be impacted by regular meditation practice. Habituation refers to decreasing response to a repeatedly-presented startle stimulus, reflecting its redundancy. PPI refers to response reduction when a startling stimulus "pulse" is preceded by a weaker sensory stimulus "prepulse" and provides an operational measure of sensorimotor gating. Here, we examined habituation and PPI of the acoustic startle response in regular meditators (n = 32), relative to meditation-naïve individuals (n = 36). Overall, there was no significant difference between meditators and non-meditators in habituation or PPI, but there was significantly greater PPI in meditators who self-reported being able to enter and sustain non-dual awareness during their meditation practice (n = 18) relative to those who could not (n = 14). Together, these findings suggest that subjective differences in meditation experience may be associated with differential sensory processing characteristics in meditators.


Assuntos
Conscientização , Habituação Psicofisiológica , Meditação , Inibição Pré-Pulso , Reflexo de Sobressalto , Humanos , Conscientização/fisiologia , Masculino , Reflexo de Sobressalto/fisiologia , Feminino , Adulto , Inibição Pré-Pulso/fisiologia , Habituação Psicofisiológica/fisiologia , Pessoa de Meia-Idade , Adulto Jovem , Filtro Sensorial/fisiologia
11.
Front Neurosci ; 18: 1357368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841093

RESUMO

Prepulse inhibition (PPI) is a well-established phenomenon wherein a weak sensory stimulus attenuates the startle reflex triggered by a subsequent strong stimulus. Within the circuit, variations in target responses observed for PPI paradigms represent prepulse-induced excitability changes. However, little is known about the mechanism of PPI. Here, we focused on short-latency PPI of the trigeminal blink reflex R1 signal with an oligosynaptic reflex arc through the principal sensory trigeminal nucleus and the facial nucleus. As the facial nucleus is facilitatory to any input, R1 PPI is the phenomenon in the former nucleus. Considering that GABAergic modulation may be involved in PPI, this study investigated whether the PPI mechanism includes GABA-A equivalent inhibition, which peaks at approximately 30 ms in humans. In 12 healthy volunteers, the reflex was elicited by electrical stimulation of the supraorbital nerve, and recorded at the ipsilateral lower eyelid by accelerometer. Stimulus intensity was 1.5 times the R1 threshold for test stimulus and 0.9 times for the prepulse. The prepulse-test interval (PTI) was 5-150 ms. Results showed significant inhibition at 40-and 80-150-ms PTIs but not at 20-, 30-, 50-, 60-, and 70-ms PTIs, yielding two distinct inhibitions of different time scales. This corresponds well to the early and late components of inhibitory post synaptic potentials by GABA-A and GABA-B receptor activation. Thus, the data support the contribution of inhibitory post synaptic potentials elicited by the prepulse to the observed PPI. As inhibitory function-related diseases may impair the different inhibition components to varying degrees, methods deconvoluting each inhibitory component contribution are of clinical importance.

12.
Psychophysiology ; 61(9): e14599, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38691020

RESUMO

Prepulse inhibition (PPI) of the startle reflex serves as a pre-cognitive marker of sensorimotor gating, and its deficit may predict cognitive impairments. Startle reflex is modulated by many factors. Among them, stress has been a topic of interest, but its effects on both pre-cognitive and cognitive variables continue to yield divergent results. This study aims to analyze the effect of acute stress on PPI of the startle reflex and cognitive function (working memory, attention, inhibition, and verbal fluency). Participants were exposed to the MAST stress induction protocol or a stress-neutral task: stress group (n = 54) or control group (n = 54). Following stress induction, participants' startle responses were recorded, and cognition was assessed. The results revealed that participants in the stress group exhibited greater startle magnitude, lower PPI, and lower scores in working memory tests compared with the control group. Additionally, a correlation was found between working memory and PPI across all the participants, independent of stress group. These findings support the notion that after stress, both greater startle magnitude and diminished PPI could play an adaptive role by allowing for increased processing of stimuli potentially dangerous and stress-related. Similarly, our results lend support to the hypothesis that lower PPI may be predictive of cognitive impairment. Considering the impact of stress on both pre-cognitive (PPI) and cognitive (working memory) variables, we discuss the possibility that the effect of stress on PPI occurs through motivational priming and emphasize the relevance of considering stress in both basic and translational science.


Assuntos
Memória de Curto Prazo , Inibição Pré-Pulso , Reflexo de Sobressalto , Estresse Psicológico , Humanos , Memória de Curto Prazo/fisiologia , Masculino , Feminino , Reflexo de Sobressalto/fisiologia , Inibição Pré-Pulso/fisiologia , Adulto Jovem , Estresse Psicológico/fisiopatologia , Adulto , Atenção/fisiologia
13.
Brain Sci ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790479

RESUMO

The sensorimotor gating is a nervous system function that modulates the acoustic startle response (ASR). Prepulse inhibition (PPI) phenomenon is an operational measure of sensorimotor gating, defined as the reduction of ASR when a high intensity sound (pulse) is preceded in milliseconds by a weaker stimulus (prepulse). Brainstem nuclei are associated with the mediation of ASR and PPI, whereas cortical and subcortical regions are associated with their modulation. However, it is still unclear how the modulatory units can influence PPI. In the present work, we developed a computational model of a neural circuit involved in the mediation (brainstem units) and modulation (cortical and subcortical units) of ASR and PPI. The activities of all units were modeled by the leaky-integrator formalism for neural population. The model reproduces basic features of PPI observed in experiments, such as the effects of changes in interstimulus interval, prepulse intensity, and habituation of ASR. The simulation of GABAergic and dopaminergic drugs impaired PPI by their effects over subcortical units activity. The results show that subcortical units constitute a central hub for PPI modulation. The presented computational model offers a valuable tool to investigate the neurobiology associated with disorder-related impairments in PPI.

15.
Brain Res ; 1836: 148938, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615924

RESUMO

Prepulse inhibition (PPI) of the auditory startle response, a key measure of sensorimotor gating, diminishes with age and is impaired in various neurological conditions. While PPI deficits are often associated with cognitive impairments, their reversal is routinely used in experimental systems for antipsychotic drug screening. Yet, the cellular and circuit-level mechanisms of PPI remain unclear, even under non-pathological conditions. We recently showed that brainstem neurons located in the caudal pontine reticular nucleus (PnC) expressing the glycine transporter type 2 (GlyT2±) receive inputs from the central nucleus of the amygdala (CeA) and contribute to PPI but via an uncharted pathway. Here, using tract-tracing, immunohistochemistry and in vitro optogenetic manipulations coupled to field electrophysiological recordings, we reveal the neuroanatomical distribution of GlyT2± PnC neurons and PnC-projecting CeA glutamatergic neurons and we provide mechanistic insights on how these glutamatergic inputs suppress auditory neurotransmission in PnC sections. Additionally, in vivo experiments using GlyT2-Cre mice confirm that optogenetic activation of GlyT2± PnC neurons enhances PPI and is sufficient to induce PPI in young mice, emphasizing their role. However, in older mice, PPI decline is not further influenced by inhibiting GlyT2± neurons. This study highlights the importance of GlyT2± PnC neurons in PPI and underscores their diminished activity in age-related PPI decline.


Assuntos
Tronco Encefálico , Proteínas da Membrana Plasmática de Transporte de Glicina , Glicina , Neurônios , Inibição Pré-Pulso , Reflexo de Sobressalto , Animais , Inibição Pré-Pulso/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Reflexo de Sobressalto/fisiologia , Camundongos , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Masculino , Glicina/metabolismo , Optogenética , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Transmissão Sináptica/fisiologia , Núcleo Central da Amígdala/fisiologia , Núcleo Central da Amígdala/metabolismo
16.
Schizophr Res ; 267: 432-440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642484

RESUMO

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Assuntos
Modelos Animais de Doenças , Maleato de Dizocilpina , Estradiol , Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Inibição Pré-Pulso , Cloridrato de Raloxifeno , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Feminino , Estradiol/farmacologia , Cloridrato de Raloxifeno/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Poli I-C/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , Atividade Motora/efeitos dos fármacos
17.
Sleep Biol Rhythms ; 22(2): 269-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38524169

RESUMO

Background: Sleep deprivation (SD) impairs pre-stimulus inhibition, but the effect of quetiapine (QET) remains largely unknown. Objective: This study aimed to investigate the behavioral and cognitive effects of QET in both naïve and sleep-deprived rats. Materials and methods: Seven groups (n = 49) of male Wistar Albino rats were used in this study. SD was performed using the modified multiple platform technique in a water tank for 72 h. Our study consists of two experiments investigating the effect of QET on pre-pulse inhibition (PPI) of the acoustic startle reflex. The first experiment tested the effect of short- and long-term administration of QET on PPI response in non-sleeping (NSD) rats. The second experiment used 72 h REM sleep deprivation as a model for SD-induced impairment of the PPI response. Here, we tested the effect of QET on the % PPI of SD rats by short- and long-term intraperitoneal injection at the last 90 min of sleep SD and immediately subsequently tested for PPI. Results: 72 h SD impaired PPI, reduced startle amplitude, and attenuated the PPI% at + 4 dB, + 8 dB, and + 16 dB prepulse intensities. 10 mg/kg short and long-term QET administration completely improved sensorimotor gating deficit, increased startle amplitude, and restored the impaired PPI% at + 4 dB, + 8 dB, and + 16 dB after 72 h SD in rats. Conclusion: Our results showed short- and long-term administration of QET improved sensorimotor gating deficit in 72 h SD. Further research is required for the etiology of insomnia and the dose-related behavioral effects of QET.

18.
Psychopharmacology (Berl) ; 241(6): 1213-1225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427059

RESUMO

RATIONALE: Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES: In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS: bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS: Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION: Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.


Assuntos
Orexinas , Inibição Pré-Pulso , Ratos Wistar , Privação do Sono , Animais , Orexinas/farmacologia , Orexinas/administração & dosagem , Orexinas/metabolismo , Masculino , Privação do Sono/fisiopatologia , Ratos , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Sono REM/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Fatores Etários , Modelos Animais de Doenças
19.
J Neurovirol ; 30(1): 71-85, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38355914

RESUMO

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , HIV-1 , RNA Mensageiro , Ratos Transgênicos , Animais , HIV-1/genética , HIV-1/fisiologia , Ratos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Edição de Genes/métodos , Neuroglia/virologia , Neuroglia/metabolismo , Dependovirus/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Técnicas de Silenciamento de Genes , RNA Viral/genética , Cognição/fisiologia , Humanos
20.
Psychopharmacology (Berl) ; 241(3): 489-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214743

RESUMO

RATIONALE: The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES: Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS: This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS: Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.


Assuntos
5-Metoxitriptamina/análogos & derivados , Alucinógenos , Humanos , Camundongos , Masculino , Animais , Alucinógenos/toxicidade , Triptaminas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA