Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21084, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256515

RESUMO

The drying process of the lithium battery pole pieces makes extensive use of the suspension nozzle. It is of great significance to study the heat transfer and pressure steady-state characteristics of the suspension nozzle and to select the appropriate nozzle structure for the production of pole pieces. Based on the SST k - ω turbulence model, this article numerically simulates the impact jet process of suspension nozzles with slits, injection holes, and effusion holes. There is a qualitative and quantitative analysis of the distribution of their velocity field, temperature field, local Nusselt number, average Nusselt number, local pressure coefficient, and average pressure coefficient, and the comprehensive performance index of the nozzle is proposed. The results show that when the weight factor of heat transfer performance α is less than 21.61% and the weight factor of pressure performance ß is more than 78.39%, the comprehensive performance of the traditional suspension nozzle with double slits is the best. As the α is increasing, the ß is decreasing. The comprehensive performance of the suspension nozzle with effusion holes is the best. The turbulent intermittence, interaction between neighbouring jets, and edge effects affect the heat transfer and pressure uniformity of the suspension nozzle.

2.
ACS Appl Mater Interfaces ; 16(29): 38792-38798, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980283

RESUMO

Nanomechanical resonators made of suspended graphene exhibit high sensitivity to pressure changes. Nevertheless, the graphene resonator pressure performance is affected owing to the gas permeation problem between the graphene film and the substrate. Therefore, we prepared edge-deposited graphene resonators by focused ion beam (FIB) deposition of SiO2, and their gas leakage velocities and pressure-sensing ability were demonstrated. In this paper, we characterize the pressure-sensing response and gas leakage velocities of graphene membranes using an all-optical actuation system. The gas leakage velocities of graphene resonators with diameters of 10, 20, and 40 µm are reduced by 5.0 × 106, 2.0 × 107, and 8.1 × 107 atoms/s, respectively, which demonstrates that the edge deposition structure can reduce the gas leakage of the resonator. Furthermore, the pressure-sensing performance of three graphene resonators with different diameters was evaluated, and their average pressure sensitivities were calculated to be 3.4, 2.4, and 1.9 kHz/kPa, with the largest full-range hysteresis errors of 0.6, 0.7, and 1.0%, respectively. The temperature stabilities of the three sizes of resonators in the temperature range of 300-400 K are 0.016, 0.015, and 0.016%/K, and the maximum resonance frequency drift over 1 h is 0.0058, 0.0048, and 0.0112%, respectively. This work has great significance for the improvement of gas leakage velocity characterization of graphene membrane and graphene resonant pressure sensor performance optimization.

3.
Eur J Mass Spectrom (Chichester) ; 30(3-4): 150-160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706254

RESUMO

This paper proposed a dual-layer linear ion trap mass analyzer (dLIT) based on micro-electromechanical systems (MEMS) technology and stacked-layer structure for the development of MEMS mass spectrometry. Its basic performance and potential capabilities were explored by ion trajectory simulations. The theoretical formulas were modified by implementing multipole expansion. The simulation results were confirmed to be highly consistent with theoretical calculations in multiple aspects, including stability diagram, secular frequencies, and mass linearity, with only a deviation of 1-2%. In the boundary ejection mode, close to 100% ejection was achieved in a single dimension by applying extra quadrupole DC voltage. Preliminary simulation results showed that dLIT can achieve a peak width of ∼2 mass units (full width at half maximum, FWHM) for m/z 60 ions even at pressures as high as 50 Pa. Furthermore, the application of AC frequency scanning mode in dLIT was also evaluated, and preliminary simulation results yield a peak width of 0.3-0.4 mass units (FWHM). The dLIT offered several advantages, including high-precision fabrication at the sub-millimeter scale, excellent high-pressure performance, and a clear physical model. It preliminarily proved to be an ideal mass analyzer for MEMS mass spectrometry.

4.
Children (Basel) ; 9(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36291388

RESUMO

OBJECTIVE: One of the major causes of cerebral ventricular shunt failure is proximal catheter occlusion. We describe a novel ventricular cerebrospinal fluid (CSF) flow replicating system that assesses pressure and flow responses to varying degrees of catheter occlusion. METHODS: Ventricular catheter performance was assessed during conditions of partial and complete occlusion. The catheters were placed into a three-dimensionally-printed phantom ventricular replicating system. Artificial CSF was pumped through the ventricular system at a constant rate of 1 mL/min to mimic CSF flow, with the proximal end of the catheter in the phantom ventricle. Pressure transducer and flow rate sensors were used to measure intra-phantom pressure, outflow pressure, and CSF flow rates. The catheters were also inserted into silicone tubing and pressure was measured in the same manner for comparison with the phantom. RESULTS: Pressure measured in the ventricle phantom did not change when the outflow of the ventricular catheter was partially occluded. However, the intraventricular phantom pressure significantly increased when the outflow catheter was 100% occluded. The flow through the catheter showed no significant difference in rate with any degree of partial occlusion of the catheter. At the distal end of the partially occluded catheters, there was less pressure compared with the nonoccluded catheters. This difference in pressure in partially occluded catheters correlated with the percentage of catheter hole occlusion. CONCLUSIONS: Our model mimics the physiological dynamics of the CSF flow in partially and completely obstructed ventricular catheters. We found that partial occlusion of the catheter had no effect on the CSF flow rate, but did reduce outflow pressure from the catheter.

5.
Children (Basel) ; 10(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36670569

RESUMO

The leading cause of ventricular shunt failure in pediatric patients is proximal catheter occlusion. Here, we evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. The following four types of catheters were tested: (1) antibiotic- and barium-impregnated, (2) polyvinylpyrrolidone, (3) barium stripe, and (4) barium impregnated. Catheters were either seeded superficially with astrocyte cells to test cellular adhesion or inoculated with cultured astrocytes into the catheters to test catheter performance under obstruction conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial CSF was pumped. Differential pressure sensors were used to measure catheter performance. Polyvinylpyrrolidone catheters had the lowest median cell attachment compared to antibiotic-impregnated (18 cells), barium stripe (17 cells), and barium-impregnated (21.5 cells) catheters after culture (p < 0.01). In addition, polyvinylpyrrolidone catheters had significantly higher flow in the phantom ventricular system (0.12 mL/min) compared to the antibiotic coated (0.10 mL/min), barium stripe (0.02 mL/min) and barium-impregnated (0.08 mL/min; p < 0.01) catheters. Polyvinylpyrrolidone catheters showed less cellular adhesion and were least likely to be occluded by astrocyte cells. Our findings can help suggest patient-appropriate proximal ventricular catheters for clinical use.

6.
MethodsX ; 8: 101380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430276

RESUMO

Lipids are a very heterogeneous class of biomolecules with distinct structures and functions. Total lipids (TLs) obtained from natural sources are regularly further separated into lipid subclasses, with the two major ones being the polar lipids (PLs) and neutral lipids (NLs). Traditional analytical methods for fractionating TLs into NLs, PLs, and their subclasses, usually comprise difficult, costly and time-consuming steps. Instead, several benefits and applications are derived by implementing a novel one-step semi-preparative and reversed-phase HPLC-analysis for separating TLs into all kinds of lipid subclasses. This method allows a one-step separation/fractionation of several subclasses of bio-functional PLs (i.e. phospholipids, glycolipids, phenolic compounds, N-acyl-homoserine-lactones, etc.) and NLs (i.e. triacylglycerols, fatty acids, esters, etc.) from TL-extracts of a natural source, prior to further testing them for their bio-functionality (i.e. in bioassays/cell models) and structure-activity relationships (i.e. LC-MS/GC-MS).•This method can be applied in several natural sources, such as animal and marine sources, plants, microorganisms of biotechnological and agricultural interest, foods, beverages and related products, and by-products.•This method can also be applied for separating specific bio-functional lipids from complex medical and pharmaceutical samples (i.e. cells, tissues, blood, plasma, liposomes, etc.), either for evaluating their role in diseases (i.e. PAF/PAF-like molecules) or by elucidating their protective roles (i.e. PLs rich in ω3 PUFA) for supplements and nutraceuticals' applications.

7.
Clin Mass Spectrom ; 14 Pt A: 54-62, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34917761

RESUMO

It has been shown that bacteria in periodontally diseased patients can be recognized by the detection of volatile metabolites in the headspace of saliva by real-time ambient mass spectrometry. The aim of this study was to use this detection method to analyze the oral metabolome in diseased periodontitis patients before and after therapy to monitor disease evolution and healing events. Twelve patients with advanced chronic periodontal disease and 12 periodontally healthy controls served as test and control groups, respectively. Clinical data, subgingival plaque samples and saliva samples were collected at baseline (BL) and 3 months after treatment. The test group received non-surgical scaling and root planing using systemic antibiotics and the control group received one session of supragingival cleaning. Saliva samples from all subjects were analyzed with ambient mass spectrometry. Significant metabolic alterations were found in the headspace of saliva of periodontitis patients 3 months after the non-surgical periodontal treatment. Furthermore, the diseased group showed metabolic features after the treatment that were similar to the healthy control group. In addition, 29 metabolic features correlated with A. actinomycetemcomitans, 17 features correlated with P. gingivalis and one feature correlated with T. denticola. It was shown that headspace secondary electrospray ionization - mass spectrometry allows the detection of different volatile metabolites in healthy and diseased patients. It can be concluded that this rapid and minimally invasive method could have the potential to routinely diagnose and monitor periodontal diseases in the headspace of saliva samples and, eventually, in exhaled breath.

8.
Adv Exp Med Biol ; 975 Pt 1: 535-549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849480

RESUMO

There is an increasing interest for analytical methods aimed to detect biological sulfur-containing amines, because of their involvement in human diseases and metabolic disorders. This work describes an improved HPLC method for the determination of sulfur containing amino acids and amines from different biological matrices. We optimized a pre-column derivatization procedure using dabsyl chloride, in which dabsylated products can be monitored spectrophotometrically at 460 nm. This method allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, taurine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell lysates. Moreover, the method is suitable for the study of physiological and non-physiological derivatives of taurine and glutathione such as hypotaurine, homotaurine, homocysteic acid and S-acetylglutathione. The present method displays good efficiency of derivatization, having the advantage to give rise to stable products compared to other derivatizing agents such as o-phthalaldehyde and dansyl chloride.With this method, we provide a tool to study sulfur cycle from a metabolic point of view in relation to the pattern of biological amino-compounds, allowing researchers to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.


Assuntos
Aminoácidos/análise , Aminas Biogênicas/análise , Cromatografia Líquida de Alta Pressão/métodos , Compostos de Enxofre/análise , Animais , Humanos , Camundongos
9.
Clin Chim Acta ; 427: 158-66, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24091099

RESUMO

Recent upward trends in the prevalence of abuse of prescription drugs and illicit substances have resulted in increased demands for toxicology testing to support the emergency department and drug treatment in pain management programs. This review will discuss the challenges faced by clinical laboratories to manage the utilization of toxicology tests, particularly those ordered in managing poisoned patients in the emergency department and chronic pain patients on opioid therapy. Optimal utilization of toxicology tests to support the emergency department relies on selecting the appropriate tests for the patient, and the availability of the results in a timely fashion. Two tiers of toxicology testing systems with different requirements for turnaround time will be discussed. In patients with chronic pain urine drug testing, including screening and confirmation testing are used extensively in pain management to monitor patient compliance. A thorough understanding of the performance characteristics of the test methodologies and drug metabolism is a key to making a proper analytical and clinical interpretation of the test results and will contribute to effective utilization of these tests. In addition, the reimbursement system is an important factor in the decision making process for test selection utilization as significant costs can be incurred by both payers and patients. Collaboration, trust, and effective communication among clinicians, patients, and clinical laboratory professionals are essential for effective utilization of toxicology testing.


Assuntos
Serviços de Laboratório Clínico/organização & administração , Serviços de Laboratório Clínico/estatística & dados numéricos , Técnicas de Laboratório Clínico/estatística & dados numéricos , Testes de Toxicidade/estatística & dados numéricos , Serviços de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/normas , Humanos , Testes de Toxicidade/economia , Testes de Toxicidade/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA