Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(5): 188, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400746

RESUMO

CRISPR/Cas9 system has been successfully implemented in animals and plants is a second-generation genome editing tool. We are able to optimize a Cas9 system to edited Ntab06050 and Ntab0857410 genes in HD and K326 tobacco cultivars respectively. The gene Ntab06050 is related to lignin synthesis while the gene Ntab0857410 belongs to pectin synthesis by utilizing Agrobacterium-mediated leaf disc method. We have constructed total eight different constructs for the lignin related gene family CCoAMT, out of which three constructs have been selected from Ntab0184090, two constructs from Ntab0392460 while one construct from each Ntab0540120, Ntab0857410 and Ntab0135940 gene. To study the Cas9 system in pectin related genes, total five constructs have been utilized under Cas9 system and multiple target sites were selected by identifying PAM sequences. Out of which three constructs were targeted from NtabGAE1and NtabGAE6 homologous while two were targeted from NtabGAUT4 homologous. Where as, UDP-D-glucuronate 4-epimerase gene family is a Golgi localized, might have a role in the interconvertion of UDP-D-GlcA and UDP-D-GalA in pectin synthesis. We have succeeded in the mutation of pectin related NtabGAUT4 and lignin related NtabCCoAMT genes with 6.2% and 9.4% mutation frequency.


Assuntos
Sistemas CRISPR-Cas , Lignina , Nicotiana , Pectinas , Lignina/metabolismo , Lignina/biossíntese , Nicotiana/genética , Nicotiana/metabolismo , Pectinas/metabolismo , Pectinas/genética , Edição de Genes/métodos , Transformação Genética , Plantas Geneticamente Modificadas/genética
2.
Front Plant Sci ; 14: 1212126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662163

RESUMO

Calcium is important for the growth and development of plants. It serves crucial functions in cell wall and cell membrane structure and serves as a secondary messenger in signaling pathways relevant to nutrient and immunity responses. Thus, measuring calcium levels in plants is important for studies of plant biology and for technology development in food, agriculture, energy, and forest industries. Often, calcium in plants has been measured through techniques such as atomic absorption spectrophotometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), and electrophysiology. These techniques, however, require large sample sizes, chemical extraction of samples or have limited spatial resolution. Here, we used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the calcium L- and K-edges to measure the calcium to carbon mass ratio with spatial resolution in plant samples without requiring chemical extraction or large sample sizes. We demonstrate that the integrated absorbance at the calcium L-edge and the edge jump in the fluorescence yield at the calcium K-edge can be used to quantify the calcium content as the calcium mass fraction, and validate this approach with onion epidermal peels and ICP-MS. We also used NEXAFS to estimate the calcium mass ratio in hypocotyls of a model plant, Arabidopsis thaliana, which has a cell wall composition that is similar to that of onion epidermal peels. These results show that NEXAFS spectroscopy performed at the calcium edge provides an approach to quantify calcium levels within plants, which is crucial for understanding plant physiology and advancing plant-based materials.

3.
Plant J ; 116(5): 1462-1476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37646760

RESUMO

Plant growth and morphogenesis are determined by the mechanical properties of its cell walls. Using atomic force microscopy, we have characterized the dynamics of cell wall elasticity in different tissues in developing roots of several plant species. The elongation growth zone of roots of all species studied was distinguished by a reduced modulus of elasticity of most cell walls compared to the meristem or late elongation zone. Within the individual developmental zones of roots, there were also significant differences in the elasticity of the cell walls of the different tissues, thus identifying the tissues that limit root growth in the different species. In cereals, this is mainly the inner cortex, whereas in dicotyledons this function is performed by the outer tissues-rhizodermis and cortex. These differences result in a different behaviour of the roots of these species during longitudinal dissection. Modelling of longitudinal root dissection using measured properties confirmed the difference shown. Thus, the morphogenesis of monocotyledonous and dicotyledonous roots relies on different tissues as growth limiting, which should be taken into account when analyzing the localization of associated molecular events. At the same time, no matrix polysaccharide was found whose immunolabelling in type I or type II cell walls would predict their mechanical properties. However, assessment of the degree of anisotropy of cortical microtubules showed a striking correlation with the elasticity of the corresponding cell walls in all species studied.


Assuntos
Magnoliopsida , Raízes de Plantas , Raízes de Plantas/metabolismo , Meristema , Zea mays/metabolismo , Elasticidade , Parede Celular/metabolismo
4.
Planta ; 257(1): 18, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538078

RESUMO

MAIN CONCLUSION: Transcriptome and biochemical analyses are applied to individual plant cell types to reveal potential players involved in the molecular machinery of cell wall formation in specialized cells such as collenchyma. Plant collenchyma is a mechanical tissue characterized by an irregular, thickened cell wall and the ability to support cell elongation. The composition of the collenchyma cell wall resembles that of the primary cell wall and includes cellulose, xyloglucan, and pectin; lignin is absent. Thus, the processes associated with the formation of the primary cell wall in the collenchyma can be more pronounced compared to other tissues due to its thickening. Primary cell walls intrinsic to different tissues may differ in structure and composition, which should be reflected at the transcriptomic level. For the first time, we conducted transcriptome profiling of collenchyma strands isolated from young celery petioles and compared them with other tissues, such as parenchyma and vascular bundles. Genes encoding proteins involved in the primary cell wall formation during cell elongation, such as xyloglucan endotransglucosylase/hydrolases, expansins, and leucine-rich repeat proteins, were significantly activated in the collenchyma. As the key players in the transcriptome orchestra of collenchyma, xyloglucan endotransglucosylase/hydrolase transcripts were characterized in more detail, including phylogeny and expression patterns. The comprehensive approach that included transcriptome and biochemical analyses allowed us to reveal peculiarities of collenchyma cell wall formation and modification, matching the abundance of upregulated transcripts and their potential substrates for revealed gene products. As a result, specific isoforms of multigene families were determined for further functional investigation.


Assuntos
Apium , Apium/genética , Celulose/metabolismo , Perfilação da Expressão Gênica , Plantas/genética , Glicosiltransferases/genética , Verduras/genética , Verduras/metabolismo , Parede Celular/metabolismo
5.
Biosensors (Basel) ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36140072

RESUMO

A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as H2O2, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated. Second, a faster and stronger oxidative burst was observed in Petunia protoplasts isolated from white petals than in those isolated from purple petals, demonstrating the photoprotective role of anthocyanins. Third, using mutants with different endogenous auxin, we demonstrated the beneficial effect of auxin during the process of primary cell wall regeneration. Moreover, UV-B irradiation has a similar accelerating effect by increasing the intracellular auxin level, as shown by double fluorescence channels. In summary, our work has revealed previously underappreciated phenotypic variability within a protoplast population and demonstrated the advantages of a microfluidic flow cytometry for assessing the in vivo dynamics of plant metabolic and physiological indices at the single-cell level.


Assuntos
Arabidopsis , Protoplastos , Antocianinas/metabolismo , Antocianinas/farmacologia , Arabidopsis/metabolismo , Cádmio , Citometria de Fluxo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Microfluídica , Protoplastos/metabolismo , Espécies Reativas de Oxigênio
6.
Planta ; 256(3): 59, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984573

RESUMO

MAIN CONCLUSION: The feruloylarabinoxylan deposition was initiated at the formation of the secondary cell wall, especially S2 layer in moso bamboo, which may affect crosslinking between cell wall components and plant growth. Hemicelluloses, major components of plant cell walls that are hydrogen bonded to cellulose and covalently bound to lignin, are crucial determinants of cell wall properties. Especially in commelinid monocotyledons, arabinoxylan is often esterified with ferulic acid, which is essential to crosslinking with cell wall components. However, the deposition patterns and localization of ferulic acid during cell wall formation remain unclear. In this study, developing moso bamboo (Phyllostachys pubescens) culms were used to elucidate deposition patterns of hemicelluloses including feruloylarabinoxylan. Ferulic acid content peaked with cessation of elongation growth, and thereafter decreased and remained stable as culm development proceeded. During primary cell wall (PCW) formation, xyloglucan and (1,3;1,4)-ß-glucan signals were detected in all tissues. Along with culm development, arabinoxylan and feruloylarabinoxylan signals were sequentially observed in the protoxylem, vascular fibers and metaxylem, and parenchyma. Feruloylarabinoxylan signals were observed slightly later than arabinoxylan signals. Arabinoxylan signals were observed throughout the compound middle lamella and secondary cell wall (SCW), whereas the feruloylarabinoxylan signal was localized to the S2 layer of the SCW. These results indicate that the biosynthesis of hemicelluloses is regulated in accordance with cell wall layers. Feruloylarabinoxylan deposition may be initiated at the formation of SCW, especially S2 layer formation. Ferulic acid-mediated linkages of arabinoxylan-arabinoxylan and arabinoxylan-lignin would arise during SCW formation with the cessation of elongation growth.


Assuntos
Lignina , beta-Glucanas , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , beta-Glucanas/metabolismo
7.
Planta ; 255(5): 107, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35445881

RESUMO

MAIN CONCLUSION: Panax notoginseng PnMYB2 is a transcriptional activator of primary and secondary cell wall formation by promoting the PCW-specific gene CesA3 and key lignin biosynthetic gene CCoAOMT1, respectively. R2R3-MYB transcription factors play important roles in regulation secondary cell wall (SCW) formation. However, there are few reports on the functions of MYB transcription factors which involved in both primary cell wall (PCW) and SCW formation. Here, we isolated an R2R3-MYB transcription factor, PnMYB2, from Panax notoginseng roots which are widely used in Chinese traditional medicines and contain abundant cellulose and lignin. The expression pattern of PnMYB2 was similar to the accumulation pattern of cellulose and lignin contents in different organs. PnMYB2 localized in the nucleus and may function as a transcriptional activator. Overexpression of PnMYB2 in Arabidopsis thaliana enhanced cellulose and lignin biosynthesis, and remarkably increased thickness of PCW and SCW in the stem of transgenic plants compared with wild-type plants. The expression levels of genes associated with PCW-specific cellulose synthase (CesA) genes and key SCW-specific lignin biosynthetic genes were significantly increased in PnMYB2-overexpressing plants compared to the wild type plants. Furthermore, yeast one-hybrid, dual-luciferase reporter assays and electrophoretic mobility shift assays (EMSA) results verified that PnMYB2 could bind and activate the promoters of AtCesA3 and PnCesA3, which are the PCW-specific cellulose biosynthetic genes, and AtCCoAOMT1 and PnCCoAOMT1, which are the key lignin biosynthetic genes. These results demonstrated the central role of PnMYB2 in PCW-specific cellulose formation and SCW-specific lignin biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Panax notoginseng , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lignina/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Front Plant Sci ; 13: 1076298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714768

RESUMO

Xylan is a hemicellulose present in the cell walls of all land plants. Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47 (IRX10/IRX10L) families are involved in the biosynthesis of its ß-1,4-linked xylose backbone, which can be further modified by acetylation and sugar side chains. However, it remains unclear how the different enzymes work together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has been described in the monocots wheat and asparagus, and co-expression of asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically active complex for secondary cell wall xylan biosynthesis. Here, we argue that an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest the existence of distinct XSCs for primary and secondary cell wall xylan synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of the primary and secondary cell wall. In contrast to the CSC, in which each CESA protein has catalytic activity, the XSC seems to contain proteins with non-catalytic function with each component bearing potentially unique but crucial roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L might not be stable in its composition during transit from the endoplasmic reticulum to the Golgi apparatus. Instead, potential dynamic changes of the XSC might be a means of regulating xylan biosynthesis to facilitate coordinated deposition of tailored polysaccharides in the plant cell wall.

9.
AoB Plants ; 13(4): plab044, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34394905

RESUMO

Primary phloem fibres (PPFs) have higher fibre quality and are economically more important for the textile sector than secondary phloem fibres. Both the chemical composition and mechanical structure of the secondary cell wall mainly influence the quality of bast fibres. We investigated the thickening of the galactan-enriched (Gn) layer and its modification process into a gelatinous (G)-layer, which is the largest portion of the secondary cell wall, during the development of the PPF in Cannabis sativa. Stem segments of hemp collected at 17, 29, 52 and 62 days after sowing were comparatively examined using light microscopy, scanning electron microscopy and transmission electron microscopy. The initial cells of PPF started the proliferation and differentiation at 17 days, but the secondary cell wall thickening had already commenced before the 29 days. Both the G- and Gn-layer were rapidly added onto the S-layer of PPFs; thus, the secondary cell wall thickness increased approximately 2-fold at 52 days (from the 29-day mark), and 8-fold at 62 days. The cortical microtubule arrays appeared adjacent to the plasma membrane of PPF cells related to the cellulose synthesis. Additionally, cross-sectioned microfibrils were observed on Gn-layer as the cluster of tiny spots. At 62 days, the specific stratification structure consisting of several lamellae occurred on the G-layer of the secondary cell wall. The secondary cell wall thickened remarkably at 52 days through 62 days so that the mature secondary cell wall consisted of three distinctive layers, the S-, G- and Gn-layer. Cortical microtubule arrays frequently appeared adjacent to the plasma membrane together with cellulose microfibrils on secondary cell wall. The G-layer of PPF at 62 days exhibited the characteristic stratification structure, which demonstrates the modification of the Gn-layer into the G-layer.

10.
Front Plant Sci ; 12: 654655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995450

RESUMO

Arabidopsis thaliana transcription factors belonging to the ERFIIId and ERFIIIe subclade (ERFIIId/e) of the APETALA 2/ethylene response factor (AP2/ERF) family enhance primary cell wall (PCW) formation. These transcription factors activate expression of genes encoding PCW-type cellulose synthase (CESA) subunits and other genes for PCW biosynthesis. In this study, we show that fiber-specific expression of ERF035-VP16 and ERF041-VP16, which are VP16-fused proteins of ERFIIId/e members, promote cell wall thickening in a wild-type background with a concomitant increase of alcohol insoluble residues (cell wall content) per fresh weight (FW) and monosaccharides related to the PCW without affecting plant growth. Furthermore, in the ERF041-VP16 lines, the total amount of lignin and the syringyl (S)/guaiacyl (G) ratio decreased, and the enzymatic saccharification yield of glucose from cellulose per fresh weight improved. In these lines, PCW-type CESA genes were upregulated and ferulate 5-hydropxylase1 (F5H1), which is necessary for production of the S unit lignin, was downregulated. In addition, various changes in the expression levels of transcription factors regulating secondary cell wall (SCW) formation were observed. In conclusion, fiber cell-specific ERF041-VP16 improves biomass yield, increases PCW components, and alters lignin composition and deposition and may be suitable for use in future molecular breeding programs of biomass crops.

11.
J Exp Bot ; 72(13): 4744-4756, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33963747

RESUMO

Walnut (Juglans regia) kernels are protected by a tough shell consisting of polylobate sclereids that interlock into a 3D puzzle. The shape transformations from isodiametric to lobed cells is well documented for 2D pavement cells, but not for 3D puzzle sclereids. Here, we study the morphogenesis of these cells by using a combination of different imaging techniques. Serial face-microtomy enabled us to reconstruct tissue growth of whole walnut fruits in 3D, and serial block face-scanning electron microscopy exposed cell shapes and their transformation in 3D during shell tissue development. In combination with Raman and fluorescence microscopy, we revealed multiple loops of cellulosic thickenings in cell walls, acting as stiff restrictions during cell growth and leading to the lobed cell shape. Our findings contribute to a better understanding of the 3D shape transformation of polylobate sclereids and the role of pectin and cellulose within this process.


Assuntos
Juglans , Parede Celular , Microscopia Eletrônica de Varredura , Morfogênese , Pectinas
12.
Cell Surf ; 7: 100049, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33665521

RESUMO

The plant primary cell wall is comprised of pectin, cellulose and hemicelluloses, whose dynamic interactions play essential roles in plant cell elongation. Through a chemical genetics screening, we identified a small molecule, named cell wall modulator (CWM), which disrupted cell growth and deformed cell shape in etiolated Arabidopsis hypocotyl. A pectin defective mutant qua2, identified from screening an Arabidopsis EMS mutant library, showed a reduced sensitivity to CWM treatment. On the other hand, pectinase treatment suppressed the CWM induced phenotype. Furthermore, cellulose content was decreased in response to CWM treatment, while the cellulose synthesis mutants ixr1 and ixr2 were hypersensitive to CWM. Together, the study identified a small molecule CWM that induced a modification of the cell wall in elongating cells, likely through interfering with pectin modification. This molecule may be used as a tool to study cell wall remodeling during plant growth.

13.
J Exp Bot ; 72(5): 1764-1781, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247728

RESUMO

To test the hypothesis that particular tissues can control root growth, we analysed the mechanical properties of cell walls belonging to different tissues of the apical part of the maize root using atomic force microscopy. The dynamics of properties during elongation growth were characterized in four consecutive zones of the root. Extensive immunochemical characterization and quantification were used to establish the polysaccharide motif(s) related to changes in cell wall mechanics. Cell transition from division to elongation was coupled to the decrease in the elastic modulus in all root tissues. Low values of moduli were retained in the elongation zone and increased in the late elongation zone. No relationship between the immunolabelling pattern and mechanical properties of the cell walls was revealed. When measured values of elastic moduli and turgor pressure were used in the computational simulation, this resulted in an elastic response of the modelled root and the distribution of stress and strain similar to those observed in vivo. In all analysed root zones, cell walls of the inner cortex displayed moduli of elasticity that were maximal or comparable with the maximal values among all tissues. Thus, we propose that the inner cortex serves as a growth-limiting tissue in maize roots.


Assuntos
Raízes de Plantas , Zea mays , Parede Celular , Módulo de Elasticidade , Elasticidade
14.
Biosens Bioelectron ; 165: 112374, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729506

RESUMO

Primary cell wall (PCW) is a rigid yet flexible cell wall surrounding plant cells and it plays key roles in plant growth, cell differentiation, intercellular communication, water movement and defence. As a technique widely used to study the characteristics of mammalian cells, electrical impedance spectroscopy (EIS) is rarely used in plant science. In this work, we designed and fabricated an EIS based biosensor coupled with microfluidic platform to investigate the formation process of PCWat the single-cell level. Arabidopsis mesophyll cells with completely regenerated PCW showed significantly higher impedance values compared to the nascent protoplasts without PCW, demonstrating that PCW formation caused a dramatic change in cell electrical properties. The device could also discriminate plant mutant cells with modified PCW compositions, thus provided a novel tool for physical phenotyping of plant cells. The dose-dependent effects of exogenously applied auxin on PCW regeneration were corroborated on this platform which revealed its potential to sensitively detect the influences of in vitro stimuli. This work not only provided one novel application of impedance-based biosensor to characterize a plant-specific developmental event, but also revealed the promises of EIS integrated microfluidic system as a sensitive, time-effective and low-cost platform to characterize single plant cells and make new scientific discoveries in plant science.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Animais , Parede Celular , Impedância Elétrica , Regeneração , Análise de Célula Única
15.
Front Plant Sci ; 11: 479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391038

RESUMO

Plants use rigid cellulose together with non-cellulosic matrix polymers to build cell walls. Cellulose microfibrils comprise linear ß(1,4)-glucan chains packed through inter- and intra-chain hydrogen-bonding networks and van der Waals forces. Due to its small size, the number of glucan chains and their arrangement in a microfibril remains elusive. Here we used atomic force microscopy (AFM) to directly image primary cell walls (PCWs) and secondary cell walls (SCWs) from fresh tissues of maize (Zea mays) under near-native conditions. By analyzing cellulose structure in different types of cell walls, we were able to measure the individual microfibrils in elongated PCWs at the sub-nanometer scale. The dimension of the microfibril was measured at 3.68 ± 0.13 nm in width and 2.25 ± 0.10 nm in height. By superimposing multiple AFM height profiles of these microfibrils, the overlay area representing the cross-section was estimated at 5.6 ± 0.4 nm2, which fitted well to an 18-chain model packed as six sheets with 234432 conformation. Interestingly we found in PCW, all these individual microfibrils could be traced back to a bundle in larger imaging area, suggesting cellulose are synthesized as large bundles in PCWs, and then split during cell expansion or elongation. In SCWs where cell growth has ceased we observed nearly-parallel twined or individual microfibrils that appeared to be embedded separately in the matrix polymers without the splitting effect, indicating different mechanisms of cellulose biosynthesis in PCW and SCW. The sub-nanometer structure of the microfibril presented here was measured exclusively from elongated PCWs, further study is required to verify if it represents the inherent structure synthesized by the cellulose synthase complex in PCWs and SCWs.

16.
Plants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423049

RESUMO

The notion that xyloglucans (XG) play a pivotal role in tethering cellulose microfibrils in the primary cell wall of plants can be traced back to the first molecular model of the cell wall proposed in 1973, which was reinforced in the 1990s by the identification of Xyloglucan Endotransglucosylase/Hydrolase (XTH) enzymes that cleave and reconnect xyloglucan crosslinks in the cell wall. However, this tethered network model has been seriously challenged since 2008 by the identification of the Arabidopsis thaliana xyloglucan-deficient mutant (xxt1 xxt2), which exhibits functional cell walls. Thus, the molecular mechanism underlying the physical integration of cellulose microfibrils into the cell wall remains controversial. To resolve this dilemma, we investigated the cell wall regeneration process using mesophyll protoplasts derived from xxt1 xxt2 mutant leaves. Imaging analysis revealed only a slight difference in the structure of cellulose microfibril network between xxt1 xxt2 and wild-type (WT) protoplasts. Additionally, exogenous xyloglucan application did not alter the cellulose deposition patterns or mechanical stability of xxt1 xxt2 mutant protoplasts. These results indicate that xyloglucan is not essential for the initial assembly of the cellulose network, and the cellulose network formed in the absence of xyloglucan provides sufficient tensile strength to the primary cell wall regenerated from protoplasts.

17.
Gene ; 741: 144522, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32145329

RESUMO

Virus-induced gene silencing (VIGS) is a transient based reverse genetic tool used to elucidate the function of novel gene in N. benthamiana. In current study, 14 UDP-D-glucuronate 4-epimerase (GAE) family members were identified and their gene structure, phylogeny and expression pattern were analyzed. VIGS system was optimized for the functional characterization of NbGAE6 homologous genes in N. benthamiana. Whilst the GAE family is well-known for the interconversion of UDP-D-GlcA and UDP-D-GalA during pectin synthesis. Our results revealed that the downregulation of these genes significantly reduced the amount of GalA in the homogalacturunan which is the major component of pectin found in primary cell wall. Biphenyl assay and high performance liquid chromatography analysis (HPLC) depicted that the level of 'GalA' monosaccharide reduced to 40-51% in VIGS plants as compared to the wild type plants. Moreover, qRT-PCR also confirmed the downregulation of the NbGAE6 mRNA in VIGS plants. In all, this is the first comprehensive study of the optimization of VIGS system for the provision of rapid silencing of GAE family members in N. benthamiana, eliminating the need of stable transformants.


Assuntos
Proteínas de Arabidopsis/genética , Carboidratos Epimerases/genética , Parede Celular/metabolismo , Nicotiana/genética , Pectinas/genética , Arabidopsis/genética , Parede Celular/genética , Parede Celular/virologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Vetores Genéticos/genética , Monossacarídeos/metabolismo , Pectinas/biossíntese , Peptídeos , Vírus de Plantas/genética , RNA Mensageiro/genética , Nicotiana/virologia
18.
Carbohydr Polym ; 230: 115581, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887882

RESUMO

Removal of non-cellulosic polymers from vegetable pulp to obtain cellulose nanofibers (CNF) is normally achieved by chemical pre-treatments which requires several washing steps. In the present study, it is demonstrated how incubation of sugar beet pulp at pH 9, followed by treatment with polysaccharide-degrading enzymes and subsequent bleaching can be done in a one-pot procedure to make CNF. The new method consumes 67% less water and removes non-cellulosic polysaccharides with similar efficiency as a chemical method. In addition, CNF produced by the new method contained slightly more pectin and formed gels with 2.7 times higher storage modulus. Nanopapers cast from chemically- and enzymatically produced CNF showed similar mechanical properties. However, without the pH 9 incubation step, the enzymes accessibility to cell-wall polymers was limited resulting in lower gel and paper strengths. In conclusion, the new method offers a sustainable route for producing high quality CNF from sugar beet waste.


Assuntos
Beta vulgaris/química , Celulose/química , Géis/química , Nanofibras/química , Celulose/síntese química , Géis/síntese química , Humanos , Pectinas/química , Polímeros/química , Resíduos Sólidos , Açúcares/química , Verduras/química
19.
J Exp Bot ; 70(14): 3615-3648, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301141

RESUMO

The primary plant cell wall is a dynamically regulated composite material of multiple biopolymers that forms a scaffold enclosing the plant cells. The mechanochemical make-up of this polymer network regulates growth, morphogenesis, and stability at the cell and tissue scales. To understand the dynamics of cell wall mechanics, and how it correlates with cellular activities, several experimental frameworks have been deployed in recent years to quantify the mechanical properties of plant cells and tissues. Here we critically review the application of biomechanical tool sets pertinent to plant cell mechanics and outline some of their findings, relevance, and limitations. We also discuss methods that are less explored but hold great potential for the field, including multiscale in silico mechanical modeling that will enable a unified understanding of the mechanical behavior across the scales. Our overview reveals significant differences between the results of different mechanical testing techniques on plant material. Specifically, indentation techniques seem to consistently report lower values compared with tensile tests. Such differences may in part be due to inherent differences among the technical approaches and consequently the wall properties that they measure, and partly due to differences between experimental conditions.


Assuntos
Biofísica/métodos , Parede Celular/química , Células Vegetais/química , Fenômenos Biomecânicos , Desenvolvimento Vegetal
20.
Plants (Basel) ; 8(6)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200526

RESUMO

The mechanical properties of cell walls play a vital role in plant development. Atomic-force microscopy (AFM) is widely used for characterization of these properties. However, only surface or isolated plant cells have been used for such investigations, at least as non-embedded samples. Theories that claim a restrictive role of a particular tissue in plant growth cannot be confirmed without direct measurement of the mechanical properties of internal tissue cell walls. Here we report an approach of assessing the nanomechanical properties of primary cell walls in the inner tissues of growing plant organs. The procedure does not include fixation, resin-embedding or drying of plant material. Vibratome-derived longitudinal and transverse sections of maize root were investigated by AFM in a liquid cell to track the changes of cell wall stiffness and elasticity accompanying elongation growth. Apparent Young's modulus values and stiffness of stele periclinal cell walls in the elongation zone of maize root were lower than in the meristem, i.e., cell walls became more elastic and less resistant to an applied force during their elongation. The trend was confirmed using either a sharp or spherical probe. The availability of such a method may promote our understanding of individual tissue roles in the plant growth processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA