Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413653, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133139

RESUMO

In proton exchange membrane water electrolysis (PEMWE), the anode oxygen evolution reaction (OER) catalysts rely heavily on the expensive and scarce iridium-based materials. Ruthenium dioxide (RuO2) with lower price and higher OER activity, has been explored for the similar task, but has been restricted by the poor stability. Herein, we developed an anion modification strategy to improve the OER performance of RuO2 in acidic media. The designed multicomponent catalyst based on sulfate anchored on RuO2/MoO3 displays a low overpotential of 190 mV at 10 mA cm-2 and stably operates for 500 hours with a very low degradation rate of 20 µV h-1. When assembled in a PEMWE cell, this catalyst as an anode shows an excellent stability at 500 mA cm-2 for 150 h. Experimental and theoretical results revealed that MoO3 could stabilize sulfate anion on RuO2 surface to suppress its leaching during OER. Such MoO3-anchored sulfate not only reduces the formation energy of *OOH intermediate on RuO2, but also impedes both the surface Ru and lattice oxygen loss, thereby achieving the high OER activity and exceptional durability.

2.
Macromol Rapid Commun ; : e2400442, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108052

RESUMO

Non-precious metal-based nitrogen-doped carbon (M-Nx/C) shows great potential as a substitute for precious metal Pt-based catalysts. However, the conventional pyrolytic methods for forming M-Nx/C active sites are prone to issues such as the lack of synergistic interactions among bimetallic atoms and the potential encasement of active sites, leading to compromised catalytic efficiency and hindered mass transfer. In this work, a highly active FeCo-N-C@U-AC electrocatalyst is developed with a high density of active sites, adequate exposure of catalytic sites, and robust mass transfer capability using the chemical vapor-phase deposition (CVD) technique. The resulting catalyst demonstrates impressive oxygen reduction reaction (ORR) catalytic performance and stability, with half-wave potentials of 0.820 V (0.1 M HClO4) and 0.911 V (0.1 M KOH), respectively. It also exhibits significantly enhanced stability, retaining 93.25% and 98.38% of current after continuous 50 000 s of durability testing, surpassing the retention rates of Pt/C (80.31% in HClO4 and 84.96% in KOH electrolytes). Notably, when employed as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs) and zinc-air flow batteries (ZAFBs), the FeCo-N-C@U-AC catalyst delivers peak power densities of 859 and 162 mW·cm-2, respectively, showcasing competitive performance comparable to benchmark Pt/C.

3.
Chem Asian J ; : e202400662, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095336

RESUMO

The design and development of new and efficient catalyst binder materials are important for improving cell performance in high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). In this study, a series of tetrafluorophenyl phosphonic acid-based binder materials (PF-y-P, y = 1, 0.83, and 0.67) with rigid structures and controllable degrees of phosphonation were prepared and used in HT-PEMFCs using the ultra-strong acid-catalyzed Friedel-Crafts reaction and the combined Michaelis-Arbuzov reaction. The samples exhibited high stability, low water uptake, superior proton conductivity, and cell performance. In addition, the oxygen mass transport properties of the PF-1-P binder were investigated using high-temperature microelectrode electrochemical testing techniques. Compared with the phosphoric acid-doped polybenzimidazole (PBI) binder, the O2 solubility of PF-1-P binder material increased by 30% (5.36 × 10-6 mol cm-3) and the PF-1-P binder material exhibited better cell stability in HT-PEMFCs. After 10.5 h of discharge at a constant current of 0.12 A cm-2, the MEA voltage decreased by 7.1% and 20.8% in case of the PF-1-P and PBI binders, respectively.

4.
Adv Sci (Weinh) ; : e2406861, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116315

RESUMO

Understanding the ice nucleation mechanism in the catalyst layers (CLs) of proton exchange membrane (PEM) fuel cells and inhibiting icing by designing the CLs can optimize the cold start strategies, which can enhance the performance of PEM fuel cells. Herein, mitigating the structural matching and templating effects by adjusting the surface morphology and wettability can inhibit icing on the platinum (Pt) catalyst surface effectively. The Pt(211) surface can inhibit icing because the atomic spacing of (211) crystalline surface is much larger than the characteristic distance of ice crystal, thereby mitigating the structural matching effects. A water overlayer on the Pt surface induced by the strong attraction of Pt can act as a template for ice layers and plays an important role in the icing process. Buckling of water overlayer due to the larger atomic spacing of (211) crystalline surface mitigates the templating effect and inhibits icing. Moreover, the water overlayer on the hydrophobic Pt(211) surface with fewer water molecules also mitigates the templating effect, which makes ice nucleation more difficult than homogeneous nucleation. These findings reveal the ice nucleation mechanisms on the Pt catalyst surface from the molecular level and are valuable for catalyst designs to inhibit icing in CL.

5.
Heliyon ; 10(15): e34783, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144928

RESUMO

In this paper, the degradation of PEMFC under different operating conditions in dynamic cycle condition is studied. Firstly, according to the failure mechanism of PEMFC, various operating conditions in dynamic cycle condition are classified, and the health indexes are established. Simultaneously, the rates and degrees of the output voltage decline of the PEMFC under different operating conditions during the dynamic cycling process were compared. Then, a model based on variational mode decomposition and long short-term memory with attention mechanism (VMD-LSTM-ATT) is proposed. Aiming at the performance of PEMFC is affected by the external operation, VMD is used to capture the global information and details, and filter out interference information. To improve the prediction accuracy, ATT is used to assign weight to the features. Finally, in order to verify the effectiveness and superiority of VMD-LSTM-ATT, we respectively apply it to three current conditions under dynamic cycle conditions. The experimental results show that under the same test conditions, RMSE of VMD-LSTM-ATT is increased by 56.11 % and MAE is increased by 28.26 % compared with GRU attention. Compared with SVM, RNN, LSTM and LSTM-ATT, RMSE of VMD-LSTM-ATT is at least 17.26 % higher and MAE is at least 5.65 % higher.

6.
ACS Appl Mater Interfaces ; 16(32): 42164-42175, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096244

RESUMO

The nanostructure of Nafion and poly(vinylidene fluoride) (PVDF) blend membranes is successfully aligned through a mechanical uniaxial stretching method. The phase-separated morphology of Nafion molecules distinctly forms hydrophilic proton channels with increased connectivity, resulting in enhanced proton conductivity. Additionally, the crystalline phase of PVDF molecules undergoes a successful transformation from the α- to ß-phase during membrane stretching, demonstrating an alignment of fluorine and hydrogen atoms with a TTTT(trans) structure. The aligned nanostructure of the blend film, combined with the dipole polarization of the ß-phase PVDF, synergistically enhances the proton conduction through the membrane for operating proton-exchange membrane fuel cells (PEMFCs). The controlled structures of the blend membranes are thoroughly investigated using atomic force microscopy and small-angle X-ray scattering. Furthermore, the improved in-plane proton conductivity facilitates increased proton conduction at the interface between the membrane and catalyst layer in the membrane-electrode assembly, ultimately enhancing the power generation of PEMFCs.

7.
Small ; : e2405918, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101599

RESUMO

The synthesis of nitrate by the electrochemical N2 oxidation reaction (NOR) is currently one of the most promising routes. However, the traditional generation of nitrate depends on the oxidation reaction between N2 and H2O (or ·OH), which involves complex reaction steps and intermediates, showing strong competition from oxygen evolution reaction (OER). Here, an effective NOR method is proposed to directly oxidize N2 by using O3 as a reactive oxygen source to reduce the reaction step. Electrochemical tests demonstrate that the nitrate yield of Pd-Mn3O4/CNT electrocatalyst reaches the milligram level, which is the highest yield reported so far for electrocatalytic NOR. Quantitative characterization is employed to establish a comprehensive set of benchmarks to confirm the intrinsic nature of nitrogen activation and test the O3-mediated reaction mechanism. Density functional theory (DFT) calculations show that the heterostructure Pd-Mn3O4 leads to a strong adsorption preference for N2 and O3, which greatly reduces the activation energy barrier for N2. This accelerates the synthesis of nitrate based on the direct formation mechanism, which reduces energy barriers and the reaction steps, thus increasing the performance of electrocatalytic nitrate production. The techno-economic analysis underscores the promising feasibility and sustainable economic value of the presented method.

8.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056929

RESUMO

Exergy analysis evaluates the efficiency of system components by quantifying the rate of entropy generation. In general, the exergy destruction rate or irreversibility rate was directly obtained through the exergy balance equation. However, this method cannot determine the origin of the component's entropy generation rate, which is a very important factor in system design and improvement. In this study, a thorough energy, exergy, and thermoeconomic analysis of a proton-exchange membrane fuel cell (PEMFC) was performed, providing the heat transfer rate, entropy generation rate, and cost loss rate of each component. The irreversibility rate of each component was obtained by the Gouy-Stodola theorem. Detailed and extensive exergy and thermoeconomic analyses of the PEMFC system determined that water cooling units experience the greatest heat transfer among the components in the studied PEMFC system, resulting in the greatest irreversibility and, thus, the greatest monetary flow loss.

9.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057893

RESUMO

Non-fluorinated chitosan-based proton exchange membranes (PEMs) have been attracting considerable interest due to their environmental friendliness and relatively low cost. However, low proton conductivity and poor physicochemical properties have limited their application in fuel cells. In this work, a reinforced nanofiller (sulfonated CS/GO, S-CS/GO) is accomplished, for the first time, via a facile amidation and sulfonation reaction. Novel chitosan-based composite PEMs are successfully constructed by the incorporation of the nanofiller into the chitosan matrix. Additionally, the effects of the type and amount of the nanofillers on physicochemical and electrochemical properties are further investigated. It is demonstrated that the chitosan-based composite PEMs incorporating an appropriate amount of the nanofillers (9 wt.%) exhibit good membrane-forming ability, physicochemical properties, improved proton conductivity, and low methanol permeability even under a high temperature and low humidity environment. When the incorporated amounts of S-CS/GO are 9 wt.%, the proton conductivity of the composite PEMs was up to 0.032 S/cm but methanol permeability was decreased to 1.42 × 10-7 cm2/s. Compared to a pristine CS membrane, the tensile strength of the composite membrane is improved by 98% and the methanol permeability is reduced by 51%.

10.
Heliyon ; 10(13): e33321, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044994

RESUMO

Among hydrogen technologies, a proton exchange membrane fuel cell (PEMFC) is known as an efficient device using hydrogen as the fuel. Although different real-time fault-diagnosis methods are available (i.e., voltage-based or electrochemical-based), the problem with these methods is their dependency on being directly connected to a computer, higher costs, lower security, and the need to perform the tests in a laboratory. The focus and the solution of this study are to propose a novel design of printed circuit board (PCB) that enables the implementation of the required sensors to detect/measure the operational parameters/contamination of PEMFC. The communication of the considered PCB will be with a server without direct contact through the Internet of Things (IoT). A specified computer. exe file has also been developed to directly connect to a personalized network hotspot (to increase security) and enable the wireless communication of the sensor and the computer. The outputs of this study can be considered a novel fault diagnosis kit that measures H 2 S wirelessly using IoT. To verify the result 11 ppm and 12 ppm of H 2 S was injected into the system, the IoT kit's measured data is compared with the experiments. The results comparison validated the suitability of the system.

11.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998350

RESUMO

The current limitations of air-cooled proton exchange membrane fuel cells (AC-PEMFCs) in water and heat management remain a major obstacle to their commercialization. A 90 cm2 full-size AC-PEMFC multi-physical field-coupled numerical model was constructed; isothermal and non-isothermal calculations were performed to explore the effects of univariate and multivariate variables on cell performance, respectively. The isothermal results indicate that lower temperature is beneficial to increase the humidity of MEA, and distribution uniformity at lower stoichiometric ratios and lower temperatures is better. The correlation between current density distribution and temperature, water content, and concentration distribution shows that the performance of AC-PEMFCs is influenced by multiple factors. Notably, under high current operation, the large heat generation may lead to high local temperature and performance decline, especially in the under-channel region with drier MEA. The higher stoichiometric ratio can enhance heat dissipation, improve the uniformity of current density, and increase power density. Optimal fuel cell performance is achieved with a stoichiometric ratio of 300, balancing the mixed influence of multiple factors.

12.
Int J Biol Macromol ; 278(Pt 1): 134205, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069043

RESUMO

To optimize the imbalance between the interfacial bonding and porosity properties of carbon paper (CP) caused by phenol formaldehyde resin (PF) impregnation, and therefore improve the performance of proton exchange membrane fuel cells (PEMFCs), a new approach through cellulose nanofibers grafted with methyl methacrylate (CNFM) as a modified reinforcement and pore-forming agent for PF is investigated. Through suppressing the methylene backbone fracture of CNFM-modified PF during its thermal depolymerization, the interfacial bonding between PF matrix carbon and carbon fibers is enhanced. Compared with unmodified CP, the in-plane resistivity of CNFM-modified CP is reduced by 35.78 %, while the connected porosity increases to 82.26 %, and more homogeneous pore size distribution (PSD) in the range of 20-40 µm is obtained for CNFM-modified CP. Besides, the tensile strength, flexural strength, and air permeability of CNFM-modified CP increase by 72.78 %, 298.4 %, and 103.97 %, respectively. In addition, CNFM-modified CP achieves the peak power density of PEMFCs to 701.81 mW·cm-2, exhibiting 10.98 % improvement compared with commercial CP (632.39 mW·cm-2), evidently achieving an integral promotion of CP and comprehensive performance.

13.
Angew Chem Int Ed Engl ; : e202411014, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034426

RESUMO

A novel Ir-Mn dual-atom electrocatalyst is synthesized by a facile ion-exchange method by incorporating Ir in SrMnO3, which yields an extremely high activity and stability for the oxygen evolution reaction (OER). The ion exchange process occurs in a self-limitation way, which favors the formation of Ir-Mn dual-atom in the IrMnO9 unit. The incorporation of Ir modulates the electronic structure of both Ir and Mn, thereby resulting in a shorter distance of the Ir-Mn dual-atom (2.41 Å) than the Mn-Mn dual-atom (2.49 Å). The modulated Ir-Mn dual-atom enables the same spin direction O (↑) of the adsorbed *O intermediates, thus facilitating the direct coupling of the two adsorbed *O intermediates to release O2 via the oxygen-oxygen radical coupling mechanism. Electrochemical tests reveal that the Ir-SrMnO3 exhibits a superior OER's activity with a low overpotential of 207 mV at 10 mA cm-2 and achieves a mass specific activity of 1100 A gIr-1 at 1.5 V. The proton-exchange-membrane water electrolyzer with the Ir-SrMnO3 catalyst exhibits a low electrolysis voltage of 1.63 V at 1.0 A cm-2 and a stable 2000-h operation with a decay of only 15 µV h-1 at 0.5 A cm-2.

14.
Small ; : e2404092, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036856

RESUMO

Acidic water electrolysis is of considerable interest due to its higher current density operation and energy conversion efficiency, but its real industrial application is highly limited by the shortage of efficient, stable, and cost-effective acidic oxygen evolution reaction (OER) electrocatalysts. Here, an electrocatalyst consisting of Ni-implanted RuO2 supported is reported on α-MnO2 (MnO2/RuO2-Ni) that shows high activity and remarkable durability in acidic OER. Precisely, the MnO2/RuO2-Ni catalyst shows an overpotential of 198 mV at a current density of 10 mA cm-2 and can operate continuously and stably for 400 h (j = 10 mA cm-2) without any obvious attenuation of activity, making it one of the best-performing acid-stable OER catalysts. Experimental results, in conjunction with density functional theory calculations, demonstrate that the interface electron transfer effect from RuO2 to MnO2, further enhanced by Ni incorporation, effectively modulates the adsorption of OOH* and significantly reduces the overpotential, thereby enhancing catalytic activity and durability.

15.
ChemSusChem ; : e202401220, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037362

RESUMO

Proton Exchange Membrane Water Electrolysis (PEMWE) has emerged as a clean and effective approach for the conversion and storage of renewable electricity, particularly due to its compatibility with fluctuating photovoltaic and wind power. However, the high cost and limited performance of iridium oxide catalysts (i.e. IrO2) used as anode catalyst in industrial PEM electrolyzers remain significant obstacles to widespread application. Although numerous low-cost and efficient alternative catalysts have been developed in laboratory research, comprehensive stability studies critical for industrial use are often overlooked. This leads to the failure of performance transfer from catalysts tested in liquid half-cell systems to those employed in PEM electrolyzers. This concept presents a thorough overview for the stability issues of anode catalysts in PEMWE, and discuss their degradation mechanisms in both liquid half-cell systems and PEM electrolyzers. We summarize comprehensive protocol for the assessment and characterization, analyze the effective strategies for stability optimization, and explore the opportunities for designing viable anode catalysts for PEM electrolyzers.

16.
Adv Sci (Weinh) ; 11(30): e2402991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874424

RESUMO

The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.

17.
Heliyon ; 10(11): e32312, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873688

RESUMO

Hydrogen production using renewable energy is in line with China's the goal of carbon peak and carbon neutrality. The construction of off-grid hydrogen energy industrial park can effectively achieve local utilization of renewable energy and develop the green hydrogen industry. However, off-grid hydrogen energy industrial park has not the compensation and sustentation from large power grid, the stable operation and economic production of electrolyzer are affected by significant factors, such as power fluctuation and frequent start stop. Therefore, this paper proposed the optimization method for capacity configuration and power allocation of electrolyzer array in off-grid integrated energy system. Firstly, based on units of energy supply, energy conversion, and energy storage, a structural model of off-grid integrated energy system was established. Then, by analyzing the operational characteristics of single electrolyzer and electrolyzer array, flexible mode of multiple electrolyzers operating in combination was proposed. Furthermore, considering the hydrogen production cost, the mean of hydrogen production volatility and penalty cost, the capacity configuration and power allocation methods for electrolyzer array were proposed, and the optimization problem is solved with multi-objective particle swarm optimization algorithm. Finally, the hydrogen energy industrial park in Zhangye is taken as example to verify the effectiveness of above research content. Compared to a single type of alkaline electrolyzer, the mean of hydrogen production volatility of multiple electrolyzers operating in combination has decreased by 43.2 %, the hydrogen production quantity has increased by 9.74 %. Compared to a single type of proton exchange membrane electrolyzer, the hydrogen production cost has been reduced by 14.16 %. Compared with the balanced running mode, the flexible operation mode can improve the cost-effective and quantity of hydrogen production.

18.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38869549

RESUMO

Polymer electrolyte membrane fuel cells (PEMFCs) have attracted much attention as highly efficient, eco-friendly energy conversion devices. However, carbon-supported Pt (Pt/C) catalysts for PEMFCs still have several problems, such as low long-term stability, to be widely commercialized in fuel cell applications. To address the stability issues of Pt/C such as the dissolution, detachment, and agglomeration of Pt nanoparticles under harsh operating conditions, we design an interesting fabrication process to produce a highly active and durable Pt catalyst by introducing a robust carbon shell on the Pt surface. Furthermore, this approach provides insights into how to regulate the carbon shell layer for fuel cell applications. Through the application of an appropriate amount of H2 gas during heat treatment, the carbon shell pores, which are integral to the structure, can be systematically modulated to facilitate oxygen adsorption for the oxygen reduction reaction. Simultaneously, the carbon shell functions as a protective barrier, preventing catalyst degradation. In this regard, we investigate an in-depth analysis of the effects of critical parameters including H2 content and the flow rate of H2/N2 mixed gas during heat treatment to prepare better catalysts.

19.
ACS Appl Mater Interfaces ; 16(24): 31145-31157, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38842949

RESUMO

Proton-conducting sulfonated polymer metal-organic framework (MOF)-based composite membranes were synthesized by anchoring the nickel MOF (Ni-MOF) to the aromatic sulfonated polymer backbone. In this work, we sulfonated two different polymers, poly(1,4-phenylene ether ether sulfone) (PEES) and poly ether ether ketone (PEEK), with a controllable sulfonation degree, and the synthesized Ni-MOF was incorporated into the sulfonated polymers to prepare a polymer electrolyte membrane. The effect of an MOF as a pendant moiety on the polymer backbone had a significant effect on properties such as water uptake, thermal, mechanical, and oxidative stabilities, swelling ratio, ion-exchange capacity (IEC), morphology, proton conductivity, and fuel-cell performance. The presence of an MOF structure enhanced the water retention capacity of the composite membranes. Adding Ni-MOF to the composite membrane improved the fuel-cell performance by increasing the OCV and power density. Among the synthesized electrolytes, the 3 wt % Ni-MOF-incorporated sPEEK membrane displayed a power density of 319 mW/cm2 with a cell voltage of 0.79 V, which was higher than the pure sulfonated polymer. Thus, the developed composite membranes are suitable for fuel-cell applications.

20.
Sci Rep ; 14(1): 13078, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844570

RESUMO

The typical commercial size of a Gas Diffusion Layer (GDL) for Proton Exchange Membrane Fuel Cell (PEMFC) application is around 180 µm up to 290 µm. GDL facilitates the diffusion of reactants to the catalyst layers and liquid removal from the membrane to the flow field. In this regard, GDL should be a porous region with conductive materials as thin as possible to reduce the size and the costs. Lowering the thickness of the GDL also results in better performance of the stack since it increases the speed of reactants to reach the catalysts. However, the main obstacle is the formation of ultra-thin porous GDL, which can be also named as standalone microporous layer (MPL). The novelty of this study is the manufacturing process and production of ultra-thin porous GDL with carbon and Polytetrafluoroethylene (PTFE) as the main materials. The produced GDL has the thickness of 28.9 µm, which has been measured using microscope imaging. This novel GDL can be used as the conductive diffusive region inside the PEM fuel cells, Alkaline fuel cells, and the cathode of PEM and Alkaline electrolyzers. Additionally, the novel invention can be considered as a 2D membrane for carbon capture purposes after being functionalized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA