Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Antioxidants (Basel) ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38929115

RESUMO

Objective: The level of tumor necrosis factor-α (TNF-α) is upregulated during the development of pulmonary vascular remodeling and pulmonary hypertension. A hallmark of pulmonary arterial (PA) remodeling is the excessive proliferation of PA smooth muscle cells (PASMCs). The purpose of this study is to investigate whether TNF-α induces PASMC proliferation and explore the potential mechanisms. Methods: PASMCs were isolated from 8-week-old male Sprague-Dawley rats and treated with 0, 20, or 200 ng/mL TNF-α for 24 or 48 h. After treatment, cell number, superoxide production, histone acetylation, DNA methylation, and histone methylation were assessed. Results: TNF-α treatment increased NADPH oxidase activity, superoxide production, and cell numbers compared to untreated controls. TNF-α-induced PASMC proliferation was rescued by a superoxide dismutase mimetic tempol. TNF-α treatment did not affect histone acetylation at either dose but did significantly decrease DNA methylation. DNA methyltransferase 1 activity was unchanged by TNF-α treatment. Further investigation using QRT-RT-PCR revealed that GADD45-α, a potential mediator of DNA demethylation, was increased after TNF-α treatment. RNAi inhibition of GADD45-α alone increased DNA methylation. TNF-α impaired the epigenetic mechanism leading to DNA hypomethylation, which can be abolished by a superoxide scavenger tempol. TNF-α treatment also decreased H3-K4 methylation. TNF-α-induced PASMC proliferation may involve the H3-K4 demethylase enzyme, lysine-specific demethylase 1 (LSD1). Conclusions: TNF-α-induced PASMC proliferation may be partly associated with excessive superoxide formation and histone and DNA methylation.

2.
Br J Pharmacol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807478

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a progressive disease in which chronic membrane potential (Em) depolarisation of the pulmonary arterial smooth muscle cells (PASMCs) causes calcium overload, a key pathological alteration. Under resting conditions, the negative Em is mainly set by two pore domain potassium (K2P) channels, of which the TASK-1 has been extensively investigated. EXPERIMENTAL APPROACH: Ion channel currents and membrane potential of primary cultured human(h) PASMCs were measured using the voltage- and current clamp methods. Intracellular [Ca2+] was monitored using fluorescent microscopy. Pulmonary BP and vascular tone measurements were also performed ex vivo using a rat PAH model. KEY RESULTS: TREK-1 was the most abundantly expressed K2P in hPASMCs of healthy donors and idiopathic(I) PAH patients. Background K+-current was similar in hPASMCs for both groups and significantly enhanced by the TREK activator ML-335. In donor hPASMCs, siRNA silencing or pharmacological inhibition of TREK-1 caused depolarisation, reminiscent of the electrophysiological phenotype of idiopathic PAH. ML-335 hyperpolarised donor hPASMCs and normalised the Em of IPAH hPASMCs. A close link was found between TREK-1 activity and intracellular Ca2+-signalling using a channel activator, ML-335, and an inhibitor, spadin. In the rat, ML-335 relaxed isolated pre-constricted pulmonary arteries and significantly decreased pulmonary arterial pressure in the isolated perfused lung. CONCLUSIONS AND IMPLICATIONS: These data suggest that TREK-1is a key factor in Em setting and Ca2+ homeostasis of hPASMC, and therefore, essential for maintenance of a low resting pulmonary vascular tone. Thus TREK-1 may represent a new therapeutic target for PAH.

3.
Biol Res ; 56(1): 66, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057829

RESUMO

BACKGROUND: Abnormal remodeling of the pulmonary vasculature, characterized by the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) along with dysregulated glycolysis, is a pathognomonic feature of pulmonary arterial hypertension (PAH). YULINK (MIOS, Entrez Gene: 54468), a newly identified gene, has been recently shown to possess pleiotropic physiologic functions. This study aims to determine novel roles of YULINK in the regulation of PAH-related pathogenesis, including PASMC migration, proliferation and glycolysis. RESULTS: Our results utilized two PAH-related cell models: PASMCs treated with platelet-derived growth factor (PDGF) and PASMCs harvested from monocrotaline (MCT)-induced PAH rats (PAH-PASMCs). YULINK modulation, either by knockdown or overexpression, was found to influence PASMC migration and proliferation in both models. Additionally, YULINK was implicated in glycolytic processes, impacting glucose uptake, glucose transporter 1 (GLUT1) expression, hexokinase II (HK-2) expression, and pyruvate production in PASMCs. Notably, YULINK and GLUT1 were observed to colocalize on PASMC membranes under PAH-related pathogenic conditions. Indeed, increased YULINK expression was also detected in the pulmonary artery of human PAH specimen. Furthermore, YULINK inhibition led to the suppression of platelet-derived growth factor receptor (PDGFR) and the phosphorylation of focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), and protein kinase B (AKT) in both cell models. These findings suggest that the effects of YULINK are potentially mediated through the PI3K-AKT signaling pathway. CONCLUSIONS: Our findings indicate that YULINK appears to play a crucial role in the migration, proliferation, and glycolysis in PASMCs and therefore positioning it as a novel promising therapeutic target for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Humanos , Animais , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Glicólise , Células Cultivadas
4.
Exp Cell Res ; 431(2): 113755, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586455

RESUMO

Hypoxia-induced pulmonary hypertension is a subgroup of type 3 pulmonary hypertension (PH) with the recommended treatment limited to oxygen therapy and lacks potential therapeutic targets. To investigate the role of NLRC3 in hypoxia-induced PH and its potential mechanism, we first collected lung tissues of high-altitude pulmonary hypertension (HAPH) patients. Immunohistochemistry and immunofluorescence showed that NLRC3 was downregulated and was mainly co-localized with the smooth muscle cells of the pulmonary vessels in HAPH patients. Besides, we found that NLRC3 was also expressed in endothelial cells in HAPH patients for the first time. Then, wild type (WT) and NLRC3 knockout (NLRC3-/-) mice were used to construct hypoxia models and primary pulmonary arterial smooth muscle cells (PASMCs) of rats and endothelial cells were cultured for verification. Right heart catheterization and echocardiography suggested that NLRC3 knockout promoted right ventricular systolic pressure (RVSP) up-regulation, right ventricular hypertrophy and fibrosis in hypoxia-induced mice. This study first demonstrated that NLRC3 deficiency promoted hypoxia-stimulated PASMCs proliferation, Human umbilical vein endothelial cells (HUVECs) apoptosis, migration and inflammation through IKK/NF-κB p65/HIF-1α pathway in vitro and in vivo, further promoted vascular remodeling and PH progression, which provided a new target for the treatment of hypoxia-induced PH.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Camundongos , Ratos , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética
5.
Vascul Pharmacol ; 151: 107194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442283

RESUMO

Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder, involving the remodelling of the small pulmonary arteries. Underlying this remodelling is the hyper-proliferation of pulmonary arterial smooth muscle cells within the medial layers of these arteries and their encroachment on the lumen. Previous studies have demonstrated an association between excessive mitochondrial fragmentation, a consequence of increased expression and post-translational activation of the mitochondrial fission protein dynamin-related protein 1 (DRP1), and pathological proliferation in PASMCs derived from PAH patients. However, the impact of prostacyclin mimetics, widely used in the treatment of PAH, on this pathological mitochondrial fragmentation remains unexplored. We hypothesise that these agents, which are known to attenuate the proliferative phenotype of PAH PASMCs, do so in part by inhibiting mitochondrial fragmentation. In this study, we confirmed the previously reported increase in DRP1-mediated mitochondrial hyper-fragmentation in PAH PASMCs. We then showed that the prostacyclin mimetic treprostinil signals via either the Gs-coupled IP or EP2 receptor to inhibit mitochondrial fragmentation and the associated hyper-proliferation in a manner analogous to the DRP1 inhibitor Mdivi-1. We also showed that treprostinil recruits either the IP or EP2 receptor to activate PKA and induce the phosphorylation of DRP1 at the inhibitory residue S637 and inhibit that at the stimulatory residue S616, both of which are suggestive of reduced DRP1 fission activity. Like treprostinil, MRE-269, an IP receptor agonist, and butaprost, an EP2 receptor agonist, attenuated DRP1-mediated mitochondrial fragmentation through PKA. We conclude that prostacyclin mimetics produce their anti-proliferative effects on PAH PASMCs in part by inhibiting DRP1-mediated mitochondrial fragmentation.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Proliferação de Células , Dinaminas/metabolismo , Dinaminas/farmacologia , Artéria Pulmonar/metabolismo , Dinâmica Mitocondrial
6.
Respir Res ; 24(1): 165, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344798

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare but fatal cardiopulmonary disease mainly characterized by pulmonary vascular remodeling. Aberrant expression of circRNAs has been reported to play a crucial role in pulmonary vascular remodeling. The existing literature predominantly centers on studies that examined the sponge mechanism of circRNAs. However, the mechanism of circRNAs in regulating PAH-related protein remains largely unknown. This study aimed to investigate the effect of circItgb5 on pulmonary vascular remodeling and the underlying functional mechanism. MATERIALS AND METHODS: High-throughput circRNAs sequencing was used to detect circItgb5 expression in control and PDGF-BB-treated pulmonary arterial smooth muscle cells (PASMCs). Localization of circItgb5 in PASMCs was determined via the fluorescence in situ hybridization assay. Sanger sequencing was applied to analyze the circularization of Itgb5. The identification of proteins interacting with circItgb5 was achieved through a RNA pull-down assay. To assess the impact of circItgb5 on PASMCs proliferation, an EdU assay was employed. Additionally, the cell cycle of PASMCs was examined using a flow cytometry assay. Western blotting was used to detect biomarkers associated with the phenotypic switch of PASMCs. Furthermore, a monocrotaline (MCT)-induced PAH rat model was established to explore the effect of silencing circItgb5 on pulmonary vascular remodeling. RESULTS: CircItgb5 was significantly upregulated in PDGF-BB-treated PASMCs and was predominately localized in the cytoplasm of PASMCs. In vivo experiments revealed that the knockdown of circItgb5 attenuated MCT-induced pulmonary vascular remodeling and right ventricular hypertrophy. In vitro experiments revealed that circItgb5 promoted the transition of PASMCs to synthetic phenotype. Mechanistically, circItgb5 sponged miR-96-5p to increase mTOR level and interacted with Uba1 protein to activate the Ube2n/Mdm2/ACE2 pathway. CONCLUSIONS: CircItgb5 promoted the transition of PASMCs to synthetic phenotype by interacting with miR-96-5p and Uba1 protein. Knockdown of circItgb5 mitigated pulmonary arterial pressure, pulmonary vascular remodeling and right ventricular hypertrophy. Overall, circItgb5 has the potential for application as a therapeutic target for PAH.


Assuntos
Hipertensão Pulmonar , Cadeias beta de Integrinas , RNA Circular , Animais , Masculino , Ratos , Células Cultivadas , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/metabolismo , Monocrotalina , Mioblastos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-sis , Ratos Sprague-Dawley , RNA Circular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Remodelação Vascular , Cadeias beta de Integrinas/genética
8.
Front Cell Dev Biol ; 11: 1132060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009479

RESUMO

Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.

9.
Int J Mol Med ; 51(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36704846

RESUMO

Filamin A (FLNA) is a high molecular weight cytoskeleton protein important for cell locomotion. A relationship between FLNA mutations and pulmonary arterial hypertension (PAH) has previously been reported; however, the detailed mechanism remains unclear. The present study aimed to explore the role of FLNA in vascular smooth muscle cells during the development of PAH. Smooth muscle cell (SMC)­specific FLNA­deficient mice were generated and the mice were then exposed to hypoxia for 28 days to build the mouse model of PAH. Human pulmonary arterial smooth muscle cells (PASMCs) were also cultured and transfected with FLNA small interfering RNA or overexpression plasmids to investigate the effects of FLNA on PASMC proliferation and migration. Notably, compared with control individuals, the expression levels of FLNA were increased in lung tissues from patients with PAH, and it was obviously expressed in the PASMCs of pulmonary arterioles. FLNA deficiency in SMCs attenuated hypoxia­induced pulmonary hypertension and pulmonary vascular remodeling. In vitro studies suggested that absence of FLNA impaired PASMC proliferation and migration, and produced lower levels of phosphorylated (p)­PAK­1 and RAC1 activity. However, FLNA overexpression promoted PASMC proliferation and migration, and increased the expression levels of p­PAK­1 and RAC1 activity. The present study highlights the role of FLNA in pulmonary vascular remodeling; therefore, it could serve as a potential target for the treatment of PAH.


Assuntos
Filaminas , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Proliferação de Células , Células Cultivadas , Filaminas/genética , Filaminas/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais , Remodelação Vascular/genética
10.
Eur J Pharmacol ; 940: 175473, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566916

RESUMO

The aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are critical contributors to the pulmonary vascular remodeling that occurs during the development of Pulmonary arterial hypertension (PAH). Krüppel-like Factor 7 (KLF7) has been reported to be involved in the development of certain cardiovascular diseases. However, the role of KLF7 in PAH remains unknown. Here, we aimed to explore whether KLF7 mediates the proliferation and migration of PASMCs and its underlying mechanism. In this study, Sprague Dawley rats were exposed to 60 mg/kg monocrotaline (MCT) for 3 weeks to induce PAH and human PASMCs were stimulated with 20 ng/ml platelet-derived growth factor-BB (PDGF-BB) for 24 h to induce proliferation and migration. The mRNA and protein expression of KLF7 were significantly down-regulated in MCT-induced PAH rats and PDGF-BB-treated PASMCs. Under normal conditions, KLF7 knockdown obviously promoted PASMCs proliferation and migration, whereas KLF7 overexpression exhibited the opposite effects. Furthermore, PDGF-BB promoted the PASMCs proliferation and migration, increased the cell proportion in S phase, which was significantly attenuated by overexpression of KLF7. Mechanistic investigation indicated that KLF7 through activation its target protein, the cell cycle inhibitor p21, which finally leading to the inhibition of PASMCs growth. Consistently, UC2288, a specific inhibitor of p21, partially reversed the PASMCs proliferation inhibited by KLF7 overexpression. Taken collectively, the data suggested that KLF7 inhibits PASMCs proliferation and migration via p21 pathway and it may be used as a new therapeutic target for the PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Becaplermina/farmacologia , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar , Ratos Sprague-Dawley , Proteínas ras
11.
Front Physiol ; 13: 1080875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569761

RESUMO

Chronic hypoxia-induced pulmonary hypertension (CHPH) is a severe disease that is characterized by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling. The resulting increase in pulmonary vascular resistance (PVR) causes right ventricular hypertrophy and ultimately right heart failure. In addition, increased PVR can also be a consequence of hypoxic pulmonary vasoconstriction (HPV) under generalized hypoxia. Increased proliferation and migration of PASMCs are often associated with high intracellular Ca2+ concentration. Recent publications suggest that Ca2+-permeable nonselective classical transient receptor potential (TRPC) proteins-especially TRPC1 and 6-are crucially involved in acute and sustained hypoxic responses and the pathogenesis of CHPH. The aim of our study was to investigate whether the simultaneous deletion of TRPC proteins 1, 3 and 6 protects against CHPH-development and affects HPV in mice. We used a mouse model of chronic hypoxia as well as isolated, ventilated and perfused mouse lungs and PASMC cell cultures. Although right ventricular systolic pressure as well as echocardiographically assessed PVR and right ventricular wall thickness (RVWT) were lower in TRPC1, 3, 6-deficient mice, these changes were not related to a decreased degree of pulmonary vascular muscularization and a reduced proliferation of PASMCs. However, both acute and sustained HPV were almost absent in the TRPC1, 3, 6-deficient mice and their vasoconstrictor response upon KCl application was reduced. This was further validated by myographical experiments. Our data revealed that 1) TRPC1, 3, 6-deficient mice are partially protected against development of CHPH, 2) these changes may be caused by diminished HPV and not an altered pulmonary vascular remodeling.

12.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497082

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.


Assuntos
Hipertensão Pulmonar , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Animais , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Artéria Pulmonar/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo
13.
Cells ; 11(18)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139373

RESUMO

Expression of the nerve growth factor NGF is increased in pulmonary hypertension (PH). We have here studied whether oxidative stress and inflammation, two pathological conditions associated with transforming growth factor-ß1 (TGF-ß1) in PH, may trigger NGF secretion by pulmonary arterial (PA) cells. Effects of hydrogen peroxide (H2O2) and interleukin-1ß (IL-1ß) were investigated ex vivo on rat pulmonary arteries, as well as in vitro on human PA smooth muscle (hPASMC) or endothelial cells (hPAEC). TßRI expression was assessed by Western blotting. NGF PA secretion was assessed by ELISA after TGF-ß1 blockade (anti-TGF-ß1 siRNA, TGF-ß1 blocking antibodies, TßRI kinase, p38 or Smad3 inhibitors). TßRI PA expression was evidenced by Western blotting both ex vivo and in vitro. H2O2 or IL-1ß significantly increased NGF secretion by hPASMC and hPAEC, and this effect was significantly reduced when blocking TGF-ß1 expression, binding to TßRI, TßRI activity, or signaling pathways. In conclusion, oxidative stress and inflammation may trigger TGF-ß1 secretion by hPASMC and hPAEC. TGF-ß1 may then act as an autocrine factor on these cells, increasing NGF secretion via TßRI activation. Since NGF and TGF-ß1 are relevant growth factors involved in PA remodeling, such mechanisms may therefore be relevant to PH pathophysiology.


Assuntos
Hipertensão Pulmonar , Fator de Crescimento Transformador beta1 , Animais , Anticorpos Bloqueadores , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão Pulmonar/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Fator de Crescimento Neural/metabolismo , Estresse Oxidativo , Artéria Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Crescimento Transformador beta1/metabolismo
14.
Circulation ; 146(16): 1243-1258, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35993245

RESUMO

BACKGROUND: RNA-binding proteins are master orchestrators of gene expression regulation. They regulate hundreds of transcripts at once by recognizing specific motifs. Thus, characterizing RNA-binding proteins targets is critical to harvest their full therapeutic potential. However, such investigation has often been restricted to a few RNA-binding protein targets, limiting our understanding of their function. In cancer, the RNA-binding protein HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1; A2B1) promotes the pro-proliferative/anti-apoptotic phenotype. The same phenotype in pulmonary arterial smooth muscle cells (PASMCs) is responsible for the development of pulmonary arterial hypertension (PAH). However, A2B1 function has never been investigated in PAH. METHOD: Through the integration of computational and experimental biology, the authors investigated the role of A2B1 in human PAH-PASMC. Bioinformatics and RNA sequencing allowed them to investigate the transcriptome-wide function of A2B1, and RNA immunoprecipitation and A2B1 silencing experiments allowed them to decipher the intricate molecular mechanism at play. In addition, they performed a preclinical trial in the monocrotaline-induced pulmonary hypertension rat model to investigate the relevance of A2B1 inhibition in mitigating pulmonary hypertension severity. RESULTS: They found that A2B1 expression and its nuclear localization are increased in human PAH-PASMC. Using bioinformatics, they identified 3 known motifs of A2B1 and all mRNAs carrying them. In PAH-PASMC, they demonstrated the complementary nonredundant function of A2B1 motifs because all motifs are implicated in different aspects of the cell cycle. In addition, they showed that in PAH-PASMC, A2B1 promotes the expression of its targets. A2B1 silencing in PAH-PASMC led to a decrease of all tested mRNAs carrying an A2B1 motif and a concomitant decrease in proliferation and resistance to apoptosis. Last, in vivo A2B1 inhibition in the lungs rescued pulmonary hypertension in rats. CONCLUSIONS: Through the integration of computational and experimental biology, the study revealed the role of A2B1 as a master orchestrator of the PAH-PASMC phenotype and its relevance as a therapeutic target in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Proliferação de Células , Hipertensão Pulmonar Primária Familiar/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Hipertensão Pulmonar/metabolismo , Monocrotalina/metabolismo , Monocrotalina/toxicidade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Artéria Pulmonar , RNA/metabolismo , Proteínas de Ligação a RNA/genética
15.
Front Genet ; 13: 810157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401684

RESUMO

Background: Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality, and so far patients have failed to benefit from therapeutics clinically available. Max interacting protein 1-0 (Mxi1-0) is one of the functional isoforms of Mxi1. Although it also binds to Max, Mxi1-0, unlike other Mxi1 isoforms, cannot antagonize the oncoprotein c-Myc because of its unique proline rich domain (PRD). While Mxi1-0 was reported to promote cell proliferation via largely uncharacterized mechanisms, it is unknown whether and how it plays a role in the pathogenesis of HPH. Methods: GEO database was used to screen for genes involved in HPH development, and the candidate players were validated through examination of gene expression in clinical HPH specimens. The effect of candidate gene knockdown or overexpression on cultured pulmonary arterial cells, e.g., pulmonary arterial smooth muscle cells (PASMCs), was then investigated. The signal pathway(s) underlying the regulatory role of the candidate gene in HPH pathogenesis was probed, and the outcome of targeting the aforementioned signaling was evaluated using an HPH rat model. Results: Mxi1 was significantly upregulated in the PASMCs of HPH patients. As the main effector isoform responding to hypoxia, Mxi1-0 functions in HPH to promote PASMCs proliferation. Mechanistically, Mxi1-0 improved the expression of the proto-oncogene c-Myc via activation of the MEK/ERK pathway. Consistently, both a MEK inhibitor, PD98059, and a c-Myc inhibitor, 10058F4, could counteract Mxi1-0-induced PASMCs proliferation. In addition, targeting the MEK/ERK signaling significantly suppressed the development of HPH in rats. Conclusion: Mxi1-0 potentiates HPH pathogenesis through MEK/ERK/c-Myc-mediated proliferation of PASMCs, suggesting its applicability in targeted treatment and prognostic assessment of clinical HPH.

16.
Front Pharmacol ; 13: 767705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370637

RESUMO

Pulmonary arterial hypertension (PAH) is an incurable disease with high mortality. Chemerin has been found to be associated with pulmonary hypertension (PH). However, the specific role of chemerin in mediating PH development remains unclear. This study aimed to elucidate the regulatory effects and the underlying mechanism of chemerin on PH and to investigate the expression levels of chemerin protein in plasma in PAH patients. In vivo, two animal models of PH were established in rats by monocrotaline (MCT) injection and hypoxia. We found that the expression levels of chemerin and its receptor, chemokine-like receptor 1 (CMKLR1), were significantly upregulated in the lungs of PH rats. Primary cultured pulmonary arterial smooth muscle cells [(PASMCs) (isolated from pulmonary arteries of normal healthy rats)] were exposed to hypoxia or treated with recombinant human chemerin, we found that CMKLR1 expression was upregulated in PASMCs in response to hypoxia or chemerin stimulation, whereas the exogenous chemerin significantly promoted the migration and proliferation of PASMCs. Notably, the regulatory effects of chemerin on PASMCs were blunted by PD98059 (a selective ERK1/2 inhibitor). Using enzyme linked immunosorbent assay (ELISA), we found that the protein level of chemerin was also markedly increased in plasma from idiopathic pulmonary arterial hypertension (IPAH) patients compared to that from healthy controls. Moreover, the diagnostic value of chemerin expression in IPAH patients was determined through receiver operating characteristic (ROC) curve analysis and the result revealed that area under ROC curve (AUC) for plasma chemerin was 0.949. Taken together, these results suggest that chemerin exacerbates PH progression by promoting the proliferation and migration of PASMCs via the ERK1/2 signaling pathway, and chemerin is associated with pulmonary hypertension.

17.
BMC Pulm Med ; 22(1): 111, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346134

RESUMO

BACKGROUND: The zinc transporter ZIP12 is a membrane-spanning protein that transports zinc ions into the cytoplasm from the extracellular space. Recent studies demonstrated that upregulation of ZIP12 is involved in elevation of cytosolic free zinc and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) induced by hypoxia. However, the expression of ZIP12 and its role in pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) in rats have not been evaluated previously. The aim of this study was to investigate the effect of ZIP12 on the proliferation and migration of PASMCs and its underlying mechanisms in MCT-induced PAH. METHODS: A PAH rat model was generated by intraperitoneal injection of 20 mg/kg MCT twice at one-week intervals. PASMCs were isolated from the pulmonary arteries of rats with MCT-induced PAH or control rats. The expression of ZIP12 and related molecules was detected in the lung tissues and cells. A ZIP12 knockdown lentivirus and an overexpressing lentivirus were constructed and transfected into PASMCs derived from PAH and control rats, respectively. EdU assays, wound healing assays and Western blotting were carried out to explore the function of ZIP12 in PASMCs. RESULTS: Increased ZIP12 expression was observed in PASMCs derived from MCT-induced PAH rats. The proliferation and migration of PASMCs from PAH rats were significantly increased compared with those from control rats. These results were corroborated by Western blot analysis of PCNA and cyclin D1. All these effects were significantly reversed by silencing ZIP12. Comparatively, ZIP12 overexpression resulted in the opposite effects as shown in PASMCs from control rats. Furthermore, selective inhibition of AKT phosphorylation by LY294002 abolished the effect of ZIP12 overexpression on enhancing cell proliferation and migration and partially suppressed the increase in ERK1/2 phosphorylation induced by ZIP12 overexpression. However, inhibition of ERK activity by U0126 resulted in partial reversal of this effect and did not influence an increase in AKT phosphorylation induced by ZIP12 overexpression. CONCLUSIONS: ZIP12 is involved in MCT-induced pulmonary vascular remodeling and enhances the proliferation and migration of PASMCs. The mechanism of these effects was partially mediated by enhancing the AKT/ERK signaling pathways.


Assuntos
Proteínas de Transporte de Cátions , Hipertensão Pulmonar , Monocrotalina , Miócitos de Músculo Liso , Animais , Proteínas de Transporte , Proteínas de Transporte de Cátions/metabolismo , Movimento Celular , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar , Ratos , Transdução de Sinais
18.
Eur J Pharmacol ; 923: 174700, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131313

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is a fatal disease caused by the progressive remodeling of pulmonary arteries (PAs). Treprostinil (TPS) is a tricyclic benzidine prostacyclin clinically used for PAH treatment. However, due to low bioavailability, short half-times, and severe systemic side effects, TPS efficacy remains limited. METHODS: In this study, glucuronic acid (GlcA)-modified liposomes were developed to improve the site-specific delivery of TPS to pulmonary arterial smooth muscle cells (PASMCs) by targeting the glucose transporter-1 (GLUT-1) in vitro and in vivo. RESULTS: Non-GlcA-modified and GlcA-modified liposomes encapsulating TPS were 106 ± 1.12 nm in diameter. The drug encapsulation efficiency (EE) was 92%. Data from rat PASMCs showed that GlcA-liposomes enhanced the inhibitory effects of TPS on PASMC proliferation and migration by suppressing growth factor expression, including transforming growth factor-ß1 (TGF-ß1), connective tissue growth factor (CTGF), and cAMP, which was possibly mediated by the cAMP-C/EBP-α p42-p21 signaling pathway. In PAH model rats, GlcA-modified liposomes significantly improved TPS bioavailability and sustained its release over time. Most importantly, the selective inhibition of pulmonary arterial pressure, rather than systemic arterial pressure, indicated the increased pulmonary-specific accumulation of TPS. Of the three TPS formulations, TPS-loaded GlcA-modified liposomes exhibited the most potent activity by inhibiting PA remodeling and muscularization, decreasing PA medial thickening, suppressing collagen deposition in PAs, and attenuating right ventricle hypertrophy (RVH) in sugen-5416-induced PAH rats. CONCLUSIONS: The GLUT-1-targeted delivery of TPS increased pulmonary specificity and enhanced TPS anti-PAH activities in vivo and in vitro.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Proliferação de Células , Epoprostenol/análogos & derivados , Epoprostenol/metabolismo , Hipertensão Pulmonar Primária Familiar , Lipossomos/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar , Ratos , Remodelação Vascular
19.
Respir Res ; 23(1): 6, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016680

RESUMO

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a chronic progressive advanced disorder pathologically characterized by pulmonary vascular remodeling. Notch4 as a cell surface receptor is critical for vascular development. However, little is known about the role and mechanism of Notch4 in the development of hypoxic vascular remodeling. METHODS: Lung tissue samples were collected to detect the expression of Notch4 from patients with HPH and matched controls. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic and normoxic conditions. Real-time quantitative PCR and western blotting were used to examine the mRNA and protein levels of Notch4. HPASMCs were transfected with small interference RNA (siRNA) against Notch4 or Notch4 overexpression plasmid, respectively. Cell viability, cell proliferation, apoptosis, and migration were assessed using Cell Counting Kit-8, Edu, Annexin-V/PI, and Transwell assay. The interaction between Notch4 and ERK, JNK, P38 MAPK were analyzed by co-immunoprecipitation. Adeno-associated virus 1-mediated siRNA against Notch4 (AAV1-si-Notch4) was injected into the airways of hypoxic rats. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodeling were evaluated. RESULTS: In this study, we demonstrate that Notch4 is highly expressed in the media of pulmonary vascular and is upregulated in lung tissues from patients with HPH and HPH rats compared with control groups. In vitro, hypoxia induces the high expression of Delta-4 and Notch4 in HPASMCs. The increased expression of Notch4 promotes HPASMCs proliferation and migration and inhibits cells apoptosis via ERK, JNK, P38 signaling pathways. Furthermore, co-immunoprecipitation result elucidates the interaction between Notch4 and ERK/JNK/P38. In vivo, silencing Notch4 partly abolished the increase in RVSP and pulmonary vascular remodeling caused by hypoxia in HPH rats. CONCLUSIONS: These findings reveal an important role of the Notch4-ERK/JNK/P38 MAPK axis in hypoxic pulmonary remodeling and provide a potential therapeutic target for patients with HPH.


Assuntos
Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , Hipóxia/complicações , Miócitos de Músculo Liso/metabolismo , Receptor Notch4/genética , Remodelação Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Notch4/biossíntese , Transdução de Sinais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
20.
Int J Biol Sci ; 18(1): 331-348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975336

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by muscularized pulmonary blood vessels, leading to right heart hypertrophy and cardiac failure. However, state-of-the-art therapeutics fail to target the ongoing remodeling process. Here, this study shows that matrix metalloproteinases (MMP)-1 and MMP-10 levels are increased in the medial layer of vessel wall, serum, and M1-polarized macrophages from patients with PAH and the lungs of monocrotaline- and hypoxia-induced PAH rodent models. MMP-10 regulates the malignant phenotype of pulmonary artery smooth muscle cells (PASMCs). The overexpression of active MMP-10 promotes PASMC proliferation and migration via upregulation of cyclin D1 and proliferating cell nuclear antigen, suggesting that MMP-10 produced by infiltrating macrophages contributes to vascular remodeling. Furthermore, inhibition of STAT1 inhibits hypoxia-induced MMP-10 but not MMP-1 expression in M1-polarized macrophages from patients with PAH. In conclusion, circulating MMP-10 could be used as a potential targeted therapy for PAH.


Assuntos
Macrófagos/metabolismo , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Remodelação Vascular , Adulto , Idoso , Animais , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA