Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
Neuroimage ; 300: 120877, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39353538

RESUMO

Pain is a highly subjective and multidimensional experience, significantly influenced by various psychological factors. Placebo analgesia and nocebo hyperalgesia exemplify this influence, where inert treatments result in pain relief or exacerbation, respectively. While extensive research has elucidated the psychological and neural mechanisms behind these effects, most studies have focused on transient pain stimuli. To explore these mechanisms in the context of tonic pain, we conducted a study using a 15-minute tonic muscle pain induction procedure, where hypertonic saline was infused into the left masseter of healthy participants. We collected real-time Visual Analogue Scale (VAS) scores and functional magnetic resonance imaging (fMRI) data during the induction of placebo analgesia and nocebo hyperalgesia via conditioned learning. Our findings revealed that placebo analgesia was more pronounced and lasted longer than nocebo hyperalgesia. Real-time pain ratings correlated significantly with neural activity in several brain regions. Notably, the putamen was implicated in both effects, while the caudate and other regions were differentially involved in placebo and nocebo effects. These findings confirm that the tonic muscle pain paradigm can be used to investigate the mechanisms of placebo and nocebo effects and indicate that placebo analgesia and nocebo hyperalgesia may have more distinct than common neural bases.


Assuntos
Hiperalgesia , Imageamento por Ressonância Magnética , Mialgia , Efeito Nocebo , Efeito Placebo , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Mialgia/fisiopatologia , Mialgia/psicologia , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Medição da Dor , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/fisiologia
2.
J Neurochem ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374168

RESUMO

High-fat diet (HFD)-induced obesity induces peripheral inflammation and hypothalamic pathogenesis linking the activation of astrocytes and microglia. Clinical evidence indicates a positive correlation between obesity and psychiatric disorders, such as depression. The connectivity of the frontal-striatal (FS) circuit, involving the caudate putamen (CPu) and anterior cingulate cortex (ACC) within the prefrontal cortex (PFC), is known for its role in stress-induced depression. Thus, there is a need for a thorough investigation into whether chronic obesity-induced gliosis, characterized by the activation of astrocytes and microglia, in these brain regions of individuals with chronic obesity. The results revealed increased S100ß+ astrocytes and Iba1+ microglia in the CPu and ACC of male obese mice, along with immune cell accumulation in meningeal lymphatic drainage. Activated GFAP+ astrocytes and Iba1+ microglia were observed in the corpus callosum of obese mice. Gliosis in the CPu and ACC was linked to elevated cleaved caspase-3 levels, indicating potential neural cell death by chronic HFD feeding. There was a loss of myelin and adenomatous polyposis coli (APC)+ oligodendrocytes (OLs) in the corpus callosum, an area known to be linked with injury to the CPu. Additionally, reduced levels of aquaporin-4 (AQP4), a protein associated within the glymphatic systems, were noted in the CPu and ACC, while ciliary neurotrophic factor (CNTF) gene expression was upregulated in these brain regions of obese mice. The in vitro study revealed that high-dose CNTF causing a trend of reduced astrocytic AQP4 expression, but it significantly impaired OL maturation. This pathological evidence highlights that prolonged HFD consumption induces persistent FS gliosis and demyelination in the corpus callosum. An elevated level of CNTF appears to act as a potential regulator, leading to AQP4 downregulation in the FS areas and demyelination in the corpus callosum. This cascade of events might contribute to neural cell damage within these regions and disrupt the glymphatic flow.

3.
Behav Brain Res ; : 115283, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368712

RESUMO

Persistent COVID-19 symptoms post-acute state have been shown to have a significant negative impact on brain structure and function. In this study, we conducted magnetic resonance imaging (MRI) of the whole brain in 43 working-age adults (mean age: 44.79±10.80; range: 24-65 years) with a history of COVID-19 (731.17±312.41 days post-diagnosis), and also assessed their cognitive function (processing speed, attention, working memory, executive function, and recognition memory), mental health, and sleep quality. MRI data were processed using FSL to derive regional volumes for bilateral nucleus accumbens, caudate, pallidum, putamen, thalamus, amygdala, and hippocampus, and total grey matter, white matter and cerebral spinal fluid volume, and analysed in relation to persistent COVID-19 symptom load, mental health, and sleep quality. Higher persistent COVID-19 symptom load was significantly associated with smaller putamen volume, lower response accuracy on working memory, executive function and recognition memory tasks, as well as a longer time to complete the executive function task, and poorer mental health and sleep quality. Smaller putamen fully mediated the relationship between persistent COVID-19 symptom load and lower executive function. Further research is required to confirm whether reduced putamen volume and its association with poor executive function persists in COVID-19 survivors in the long term.

4.
Int J Clin Health Psychol ; 24(3): 100499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308781

RESUMO

Background: As two typical types of social rewards, both value affirmation and emotional support could alleviate acute stress response, but it is not clear whether they can impact stress circuit function and regulation through different neural pathways. Method: Sixty-two participants were randomly assigned to the value affirmation, emotional support, and non-reward conditions, then administered an adapted version of the ScanSTRESS paradigm. Participants' subjective reports of uncontrollability and social evaluative threat were measured to explore the mitigation of stress by social rewards at the behavioral level. Meanwhile, their acute salivary cortisol response to stress was compared among different social reward conditions. Furthermore, we computed linear contrasts for performance (vs relaxation) and reward (vs non-reward) and used psychophysiological interaction (PPI) analysis to explore the impact of social reward on stress circuit function and regulation. Results: Both value affirmation and emotional support conditions reduced subjective reports of uncontrollability and social evaluation threat, but not cortisol response to stress. Furthermore, value affirmation reduced uncontrollability by enhancing putamen activation, whereas emotional support reduced social evaluation threat by enhancing putamen activation. More importantly, during stress, value affirmation enhanced the functional connectivity of the putamen-hippocampus and putamen-angular gyrus (AG), whereas emotional support enhanced the functional connectivity of the putamen-ventrolateral prefrontal cortex (vlPFC) and putamen-temporal pole mid, compared to the non-reward condition. Conclusion: Value affirmation and emotional support alleviated acute stress response in different neural pathways. These findings suggested a precise categorization of social reward in intervention of a range of adverse psychological and physiological responses caused by stress.

5.
Nat Sci Sleep ; 16: 1407-1418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318395

RESUMO

Purpose: Converging evidence implicates the putamen in sleep-wake regulation. However, its role remains unclear. We hypothesized that metabolic abnormalities in the putamen are linked to insomnia disorder, which has not been previously addressed, and investigated putaminal N-acetylaspartate (NAA), choline (Cho), and creatine (Cr) in patients with insomnia disorder compared to healthy controls. Participants and Methods: In the present study, the concentrations of NAA, Cho, and Cr in the putamen of 23 patients with insomnia disorder and 18 healthy controls were determined using proton magnetic resonance spectroscopy. Sociodemographic, psychometric, and polysomnography data were obtained from all participants. Results: We found that the mean NAA/Cr ratio of the right putamen was significantly greater in the insomnia group compared to the control group and also greater than the left putamen within the insomnia group. The NAA/Cr ratio of the right putamen distinguished insomnia disorder from normal sleep with 78.3% sensitivity and 61.1% specificity. Furthermore, this ratio positively correlated with both objective and subjective insomnia severity and sleep quality. Conclusion: Our findings provide critical evidence for the dysfunctional putaminal metabolism of NAA/Cr in insomnia disorder, suggesting that the abnormal NAA/Cr ratio of the right putamen is linked to wakefulness in patients with insomnia disorder and may serve as a potential biomarker of insomnia disorder.

6.
Alpha Psychiatry ; 25(3): 413-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39148597

RESUMO

Objective: Schizophrenia is often associated with volumetric reductions in cortices and expansions in basal ganglia, particularly the putamen. Recent genome-wide association studies have highlighted the significance of variants in the 3' regulatory region adjacent to the kinectin 1 gene (KTN1) in regulating gray matter volume (GMV) of the putamen. This study aimed to comprehensively investigate the involvement of this region in schizophrenia. Methods: We analyzed 1136 single-nucleotide polymorphisms (SNPs) covering the entire 3' regulatory region in 4 independent dbGaP samples (4604 schizophrenia patients vs. 4884 healthy subjects) and 3 independent Psychiatric Genomics Consortium samples (107 240 cases vs. 210 203 controls) to identify consistent associations. Additionally, we examined the regulatory effects of schizophrenia-associated alleles on KTN1 mRNA expression in 16 brain areas among 348 subjects, as well as GMVs of 7 subcortical nuclei in 38 258 subjects, and surface areas (SA) and thickness (TH) of the entire cortex and 34 cortical areas in 36 936 subjects. Results: The major alleles (f > 0.5) of 25 variants increased (ß > 0) the risk of schizophrenia across 2 to 5 independent samples (8.4 × 10-4 ≤ P ≤ .049). These schizophrenia-associated alleles significantly elevated (ß > 0) GMVs of basal ganglia, including the putamen (6.0 × 10-11 ≤ P ≤ 1.1 × 10-4), caudate (8.7 × 10-4 ≤ P ≤ 9.4 × 10-3), pallidum (P = 6.0 × 10-4), and nucleus accumbens (P = 2.7 × 10-5). Moreover, they potentially augmented (ß > 0) the SA of posterior cingulate and insular cortices, as well as the TH of frontal (pars triangularis and medial orbitofrontal), parietal (superior, precuneus, and inferior), and temporal (transverse) cortices, but potentially reduced (ß < 0) the SA of the whole, frontal (medial orbitofrontal), and temporal (pole, superior, middle, and entorhinal) cortices, as well as the TH of rostral middle frontal and superior frontal cortices (8.9 × 10-4 ≤ P ≤ .050). Conclusion: Our findings identify significant and functionally relevant risk alleles in the 3' regulatory region adjacent to KTN1, implicating their crucial roles in the development of schizophrenia.

7.
Eur J Neurosci ; 60(6): 5113-5140, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161062

RESUMO

For over four decades, fast-scan cyclic voltammetry (FSCV) has been used to selectively measure neurotransmitters such as dopamine (DA) with high spatial and temporal resolution, providing detailed information about the regulation of DA in the extracellular space. FSCV is an optimal method for determining concentrations of stimulus-evoked DA in brain tissue. When modelling diseases involving disturbances in DA transmission, preclinical rodent models are especially useful because of the availability of specialized tools and techniques that serve as a foundation for translational research. There is known heterogeneity in DA dynamics between and within DA-innervated brain structures and between males and females. However, systematic evaluations of sex- and species-differences across multiple areas are lacking. Therefore, using FSCV, we captured a broad range of DA dynamics across five sub-regions of the dorsal and ventral striatum of males and females of both rats and mice that reflect the functional heterogeneity of DA kinetics and dynamics within these structures. While numerous differences were found, in particular, we documented a strong, consistent pattern of increased DA transporter activity in females in all of the regions surveyed. The data herein are intended to be used as a resource for further investigation of DA terminal function.


Assuntos
Corpo Estriado , Dopamina , Caracteres Sexuais , Animais , Dopamina/metabolismo , Masculino , Feminino , Corpo Estriado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Especificidade da Espécie , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ratos Sprague-Dawley
8.
J Neurosurg ; : 1-13, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39059426

RESUMO

OBJECTIVE: The objective of this study was to develop and evaluate the feasibility and safety of a novel transaxial surgical approach for the delivery of human induced pluripotent stem cell-derived dopaminergic neuroprogenitor cells (DANPCs) into the putamen nucleus using nonhuman primates and surgical techniques and tools relevant to human clinical translation. METHODS: Nine immunosuppressed, unlesioned adult cynomolgus macaques (4 females, 5 males) received intraputaminal injections of vehicle or DANPCs (0.9 × 105 to 1.1 × 105 cells/µL) under real-time intraoperative MRI guidance. The infusates were combined with 1-mM gadoteridol (for intraoperative MRI visualization) and delivered via two tracks per hemisphere (ventral and dorsal) using a transaxial approach. The total volumes of infusion were 25 µL and 50 µL for the right and left putamen, respectively (infusion rate 2.5 µL/min). Animals were evaluated with a battery of clinical and behavioral outcome measures and euthanized 7 or 30 days postsurgery; full necropsies were performed by a board-certified veterinary pathologist. Brain tissues were collected and processed for immunohistochemistry, including against the human-specific marker STEM121. RESULTS: The optimized surgical technique and tools produced successful targeting of the putamen via the transaxial approach. Intraoperative MR images confirmed on-target intraputaminal injections in all animals. All animals survived to scheduled termination without clinical evidence of neurological deficits. The first 4 animals to undergo surgery had mild brain swelling noted at the end of surgery, of which 3 had transient reduced vision; administration of mannitol therapy and reduced intravenous fluid during the surgical procedure addressed these complications. Immunostaining against STEM121 confirmed the presence of grafted cells along the injection track within the targeted putamen area of DANPC-treated animals. All adverse histological findings were limited in scope and consistent with surgical manipulation, injection procedure, and postsurgical inflammatory response to the mechanical disruption caused by the cannula insertion. CONCLUSIONS: The delivery system, injection procedure, and DANPCs were well tolerated in all animals. Prevention of mild brain swelling by mannitol dosing and reduction of intravenous fluids during surgery allowed visual effects to be avoided. The results of the study established that this novel transaxial approach can be used to correctly and safely target cell injections to the postcommissural putamen and support clinical investigation.

9.
Front Neuroanat ; 18: 1454746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021662

RESUMO

[This corrects the article DOI: 10.3389/fnana.2019.00022.].

10.
J Psychiatr Res ; 177: 338-345, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068778

RESUMO

The putamen has been proposed to play a critical role in the development of obsessive-compulsive disorder (OCD). The primary objective of this study was to examine the resting-state regional activity and functional connectivity patterns of the putamen in individuals diagnosed with OCD. To achieve this, we employed resting-state functional magnetic resonance imaging (rs-fMRI) to collect data from a sample of 45 OCD patients and 53 healthy control participants. We aimed to use the regional amplitude of low-frequency fluctuation (ALFF) analysis to generate the ROI masks of the putamen and then conduct the whole brain functional connectivity of the putamen in individuals with OCD. Compared to controls, the OCD group demonstrated decreased ALFF in bilateral putamen. The right putamen also displayed decreased FC with the left putamen extending to the inferior frontal gyrus (IFG), bilateral precuneus extending to calcarine, the right middle occipital cortex extending to the right middle temporal cortex, and the left middle occipital gyrus. The decreased connectivity between the right putamen and the left IFG was negatively correlated with Yale-Brown Obsessive Compulsive scale (Y-BOCS) Obsession Scores. This study aimed to reveal the putamen changes in resting-state activity and connectivity in OCD patients, highlighting the significance of aberrant ALFF/FC of the putamen is a key characteristic of OCD.


Assuntos
Imageamento por Ressonância Magnética , Vias Neurais , Transtorno Obsessivo-Compulsivo , Putamen , Humanos , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/patologia , Putamen/diagnóstico por imagem , Putamen/fisiopatologia , Masculino , Feminino , Adulto , Adulto Jovem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Mapeamento Encefálico , Descanso , Processamento de Imagem Assistida por Computador
11.
ABCS health sci ; 49: e024304, 11 jun. 2024. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1563364

RESUMO

Parkinson's disease patients experience motor signs and non-motor symptoms caused by the disease. Deep brain stimulation of the Subthalamic Nucleus (STN) itself or its ventral or dorsal borders is one of the treatment options indicated to treat the refractory symptoms of this disease. However, it is still unknown which edge, when stimulated, generates more beneficial effects for these patients, which is the objective of this systematic review. To answer this question, electronic and manual searches were conducted in five databases and gray literature to identify studies that answered the question in this review. The selection of studies, data extraction, and analysis of the risk of bias of the included studies were performed. In total, seven studies were included in this systematic review. Most studies presented a minimal risk of bias, and their main methodological limitation was related to the sample inclusion criteria. Stimulation of the dorsal or ventral borders of the STN resulted in improved motor signs of Parkinson's disease, with some of the studies tending towards the choice of dorsal border stimulation for better motor effects, while the improvement in non-motor symptoms and inhibitory control was due to stimulation of the ventral border. The findings of this systematic review suggest that the improvement in the motor signs of Parkinson's disease can be brought about by stimulating the dorsal or ventral borders of the subthalamic nucleus, whereas non-motor symptoms such as anxiety improve with stimulation of the ventral border.


Pacientes com doença de Parkinson frequentemente experimentam sinais motores e sintomas não motores ocasionados pela doença. A estimulação cerebral profunda do Núcleo Subtalâmico (NST) ou de suas bordas ventral ou dorsal é uma das opções de tratamento indicada para tratar sintomas refratários dessa doença. No entanto, ainda não se sabe qual a borda que, ao ser estimulada, gera mais efeitos benéficos a esses pacientes, sendo esse o objetivo dessa revisão sistemática. Para responder essa questão foram realizadas buscas eletrônicas e manuais em cinco bancos de dados e na literatura cinzenta para identificar estudos que abordassem essa temática. Foram executados a seleção dos estudos, extração de dados e análise do risco de viés dos estudos incluídos. No total, sete artigos foram selecionados para comporem o estudo. A maioria dos estudos apresentou baixo risco de viés, sendo que a principal limitação metodológica deles se relacionou com os critérios de inclusão da amostra. A estimulação da borda dorsal ou ventral do NST resultou na melhora dos sinais motores da doença de Parkinson, com alguns dos estudos inclusos com tendência para a escolha da estimulação da borda dorsal para melhores efeitos motores, enquanto a melhora dos sintomas não motores e do controle inibitório foi devido à estimulação da borda ventral. Os achados sugerem que a melhora dos sinais motores da doença de Parkinson pode ser ocasionada ao estimular a borda dorsal ou ventral do Núcleo subtalâmico, enquanto os sintomas não motores, como a ansiedade, melhoram com a estimulação da borda ventral.


Assuntos
Doença de Parkinson/terapia , Núcleo Subtalâmico , Estimulação Encefálica Profunda , Estudos Transversais , Estudos Observacionais como Assunto
12.
J Neurol ; 271(8): 5213-5222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839638

RESUMO

BACKGROUND: Parkinson's disease (PD) manifests as a wide variety of clinical phenotypes and its progression varies greatly. However, the factors associated with different disease progression remain largely unknown. METHODS: In this retrospective cohort study, we enrolled 113 patients who underwent 18F-FP-CIT PET scan twice. Given the negative exponential progression pattern of dopamine loss in PD, we applied the natural logarithm to the specific binding ratio (SBR) of two consecutive 18F-FP-CIT PET scans and conducted linear mixed model to calculate individual slope to define the progression rate of nigrostriatal degeneration. We investigated the clinical and dopamine transporter (DAT) availability patterns associated with the progression rate of dopamine depletion in each striatal sub-region. RESULTS: More symmetric parkinsonism, the presence of dyslipidemia, lower K-MMSE total score, and lower anteroposterior gradient of the mean putaminal SBR were associated with faster progression rate of dopamine depletion in the caudate nucleus. More symmetric parkinsonism and lower anteroposterior gradient of the mean putaminal SBR were associated with faster depletion of dopamine in the anterior putamen. Older age at onset, more symmetric parkinsonism, the presence of dyslipidemia, and lower anteroposterior gradient of the mean putaminal SBR were associated with faster progression rate of dopamine depletion in the posterior putamen. Lower striatal mean SBR predicted the development of LID, while lower mean SBR in the caudate nuclei predicted the development of dementia. DISCUSSION: Our results suggest that the evaluation of baseline clinical features and patterns of DAT availability can predict the progression of PD and its prognosis.


Assuntos
Corpo Estriado , Progressão da Doença , Proteínas da Membrana Plasmática de Transporte de Dopamina , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Feminino , Idoso , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/complicações , Estudos Retrospectivos , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Tropanos , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Substância Negra/patologia
13.
J UOEH ; 46(2): 221-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839290

RESUMO

A woman in her 30s who was being treated for a mental illness with several psychotropic drugs was admitted to the hospital after being found in a state of unconsciousness and respiratory arrest at home. She was pronounced dead 12 hours after she was discovered. Her autopsy revealed symmetrical hemorrhagic necrosis in the putamen on both sides of her cerebrum. Although many drugs were detected in her blood, all of those other than dextromethorphan (DXM) were within or below the therapeutic range. Her blood DXM was 1.73 µg/ml at admission and 1.61 µg/ml at autopsy, which were within the toxic range or coma-to-death range. The cause of death was diagnosed as DXM poisoning. DXM can cause hallucinations and euphoria if taken in excess, but since it is available as an over-the-counter drug at general pharmacies, an increasing number of young people are overdosing on it, mistakenly believing it to be a safe drug with few side effects. We believe that further social measures against DXM are necessary in Japan, such as disseminating correct knowledge in society and regulating over-the-counter sales.


Assuntos
Autopsia , Dextrometorfano , Humanos , Dextrometorfano/intoxicação , Feminino , Adulto , Evolução Fatal
14.
Front Psychiatry ; 15: 1364271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903634

RESUMO

Introduction: Suicide is a current leading cause of death in adolescents and young adults. The neurobiological underpinnings of suicide risk in youth, however, remain unclear and a brain-based model is lacking. In adult samples, current models highlight deficient serotonin release as a potential suicide biomarker, and in particular, involvement of serotonergic dysfunction in relation to the putamen and suicidal behavior. Less is known about associations among striatal regions and relative suicidal risk across development. The current study examined putamen connectivity in depressed adolescents with (AT) and without history of a suicide attempt (NAT), specifically using resting-state functional magnetic resonance imaging (fMRI) to evaluate patterns in resting-state functional connectivity (RSFC). We hypothesized the AT group would exhibit lower striatal RSFC compared to the NAT group, and lower striatal RSFC would associate with greater suicidal ideation severity and/or lethality of attempt. Methods: We examined whole-brain RSFC of six putamen regions in 17 adolescents with depression and NAT (MAge [SD] = 16.4[0.3], 41% male) and 13 with AT (MAge [SD] = 16.2[0.3], 31% male). Results: Only the dorsal rostral striatum showed a statistically significant bilateral between-group difference in RSFC with the superior frontal gyrus and supplementary motor area, with higher RSFC in the group without a suicide attempt compared to those with attempt history (voxel-wise p<.001, cluster-wise p<.01). No significant associations were found between any putamen RSFC patterns and suicidal ideation severity or lethality of attempts among those who had attempted. Discussion: The results align with recent adult literature and have interesting theoretical and clinical implications. A possible interpretation of the results is a mismatch of the serotonin transport to putamen and to the supplementary motor area and the resulting reduced functional connectivity between the two areas in adolescents with attempt history. The obtained results can be used to enhance the diathesis-stress model and the Emotional paiN and social Disconnect (END) model of adolescent suicidality by adding the putamen. We also speculate that connectivity between putamen and the supplementary motor area may in the future be used as a valuable biomarker of treatment efficacy and possibly prediction of treatment outcome.

16.
J Neurochem ; 168(9): 2722-2735, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38783749

RESUMO

The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.


Assuntos
Núcleo Caudado , Etanol , Macaca fascicularis , Putamen , Receptores Acoplados a Proteínas G , Animais , Masculino , Putamen/metabolismo , Putamen/efeitos dos fármacos , Núcleo Caudado/metabolismo , Núcleo Caudado/efeitos dos fármacos , Etanol/farmacologia , Etanol/administração & dosagem , Receptores Acoplados a Proteínas G/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Depressores do Sistema Nervoso Central/administração & dosagem , Autoadministração
17.
Hippocampus ; 34(7): 310-326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38721743

RESUMO

Classic research has shown a division in the neuroanatomical structures that support flexible (e.g., short-cutting) and habitual (e.g., familiar route following) navigational behavior, with hippocampal-caudate systems associated with the former and putamen systems with the latter. There is, however, disagreement about whether the neural structures involved in navigation process particular forms of spatial information, such as associations between constellations of cues forming a cognitive map, versus single landmark-action associations, or alternatively, perform particular reinforcement learning algorithms that allow the use of different spatial strategies, so-called model-based (flexible) or model-free (habitual) forms of learning. We sought to test these theories by asking participants (N = 24) to navigate within a virtual environment through a previously learned, 9-junction route with distinctive landmarks at each junction while undergoing functional magnetic resonance imaging (fMRI). In a series of probe trials, we distinguished knowledge of individual landmark-action associations along the route versus knowledge of the correct sequence of landmark-action associations, either by having absent landmarks, or "out-of-sequence" landmarks. Under a map-based perspective, sequence knowledge would not require hippocampal systems, because there are no constellations of cues available for cognitive map formation. Within a learning-based model, however, responding based on knowledge of sequence would require hippocampal systems because prior context has to be utilized. We found that hippocampal-caudate systems were more active in probes requiring sequence knowledge, supporting the learning-based model. However, we also found greater putamen activation in probes where navigation based purely on sequence memory could be planned, supporting models of putamen function that emphasize its role in action sequencing.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Navegação Espacial , Humanos , Navegação Espacial/fisiologia , Hipocampo/fisiologia , Hipocampo/diagnóstico por imagem , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto Jovem , Adulto , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Mapeamento Encefálico/métodos , Realidade Virtual , Sinais (Psicologia)
18.
Brain Imaging Behav ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758278

RESUMO

Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.

19.
Heliyon ; 10(7): e27950, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689949

RESUMO

Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.

20.
Psychol Med ; : 1-11, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801091

RESUMO

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA