Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
BMC Chem ; 18(1): 188, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342353

RESUMO

Humin-sulfuric acid (Humin-SO3H) as a novel efficient biobased sulfonic acid was easily prepared by adding chlorosulfuric acid (ClSO3H) to Humin and characterized by potentiometric titration and FT-IR spectrum. Humin-SO3H is an eco-friendly, heterogeneous biobased, and efficient catalyst for Paal-Knorr and Clauson-Kaas pyrrole synthesis. The catalyst is easily recovered by simple filtration and has excellent turnover efficiency even after 4 cycles. Besides, due to the clearance of the biocatalyst away from the reaction media, the desired highly pure products can be achieved in high to excellent yields. Due to high water dispersibility, Humin-SO3H can be utilized as a highly efficient green catalyst for pyrrole synthesis.

2.
ACS Appl Mater Interfaces ; 16(39): 53072-53082, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39312208

RESUMO

A promising strategy is proposed for fabricating flexible pressure/gas sensors, which have a microprotuberance and microwrinkle structure at micropillars on their sensing substrates. The sensing substrates were prepared by compression molding thermoplastic polyurethane (TPU; an industrial grade polymer) and subsequent pyrrole polymerization. Benefiting from the hierarchical structure on the sensing substrates, the flexible sensors exhibit high performances in detecting both pressure and ammonia (NH3). Mechanism for the functionalities of the hierarchical structure of the pressure sensors was analyzed. Such unique hierarchical structure endows the interlocked pressure sensor by assembling the substrates prepared at 60 min polymerization time with a relatively high sensitivity in a wider linearity range (1.15 kPa-1, 0-800 Pa), a lower detection limit of 6.2 Pa, and shorter response and recovery times (26/28 ms). The combination of stronger interfacial interaction between the TPU and polypyrrole layer, the mutual support of the interlocked micropillars, and the inherent high resilience of TPU endows the pressure sensor with lower hysteresis, good repeatability and stability, and higher durability (10,000 cycles). The interlocked pressure sensor can detect full-range human physiological activities from weak physiological signals (such as face muscle contraction, heartbeat, and breath) to body movements (such as head, elbow, and foot movement). The gas sensor assembled with the hierarchical sensing substrate prepared at 60 min polymerization time exhibits selective, stable, and faster sensing responses to NH3. The proposed facile and cost-effective preparation strategy can be an excellent candidate for fabricating high-performance and multifunctional sensors.

3.
Beilstein J Org Chem ; 20: 2163-2170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224227

RESUMO

For the first time, herein, we report the synthetic part of the truxene-centred mono-, di- and tri-substituted dipyromethanes (DPMs) in good yields (60-80%) along with their preliminary photophysical (absorption, emission and time resolved fluorescence lifetime) properties. The condensation reaction for assembling the required DPMs were catalyzed with trifluoroacetic acid (TFA) at 0 °C to room temperature (rt), and the stable dipyrromethanes were purified through silica-gel column chromatography. After successfully synthesizing these easy-to-make yet interesting molecules, they were fully characterized by means of the standard spectroscopic techniques (1H NMR, 13C NMR and HRMS). We are of the opinion that these truxene-based systems will be useful for diverse applications in future studies.

4.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39338334

RESUMO

Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 µM; IC50eeAChE-4.145 µM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.

5.
Molecules ; 29(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339333

RESUMO

Neurodegenerative diseases such as Parkinson's and Alzheimer's continue to be some of the most significant challenges in modern medicine. Recent research related to the molecular mechanisms of parkinsonism has opened up new approaches to antiparkinsonian therapy. In response to this, we present the evaluation of the potential neuroprotective and MAOA/MAOB inhibitory effects of newly synthesized hydrazones, containing a pyrrole moiety in the carboxyl fragment of the structure. The substances were studied on different brain subcellular fractions, including rat brain synaptosomes, mitochondria, and microsomes. The single application of 50 µM of each compound to the subcellular fractions showed that all substances exhibit a weak neurotoxic effect, with 7b, 7d, and 8d being the least neurotoxic representatives. The corresponding neuroprotective and antioxidant effects were also evaluated in different injury models on subcellular fractions, single out 7b, 7d, and 8d as the most prominent derivatives. A 1 µM concentration of each molecule from the series was also studied for potential hMAOA/hMAOB inhibitory effects. The results revealed a lack of hMAOA activity for all evaluated structures and the appearance of hMAOB effects, with compounds 7b, 7d, and 8d showing effects similar to those of selegiline. The best hMAOB selectivity index (>204) was determined for 7d and 8d, distinguishing these two representatives as the most promising molecules for further studies as potential selective MAOB inhibitors. The performed molecular docking simulations defined the appearance of selective MAOB inhibitory effects based on the interaction of the tested molecules with Tyr398, which is one of the components of the aromatic cage of MAOB and participated in π-π stabilization with the aromatic pyrrole ring. The preliminary PAMPA testing indicated that in relation to the blood-brain barrier (BBB) permeability, the tested pyrrole-based hydrazones may be considered as high permeable, except for 8a and 8e, which were established to be permeable in the medium range with -logP of 5.268 and 5.714, respectively, compared to the applied references.


Assuntos
Hidrazonas , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Fármacos Neuroprotetores , Pirróis , Monoaminoxidase/metabolismo , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Animais , Ratos , Pirróis/química , Pirróis/farmacologia , Humanos , Estrutura Molecular , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Estrutura-Atividade , Neuroproteção/efeitos dos fármacos
6.
Acta Crystallogr C Struct Chem ; 80(Pt 9): 472-477, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39115536

RESUMO

Three 2,4-diarylpyrroles were synthesized starting from 4-nitrobutanones and the crystal structures of two derivatives were analysed. These are 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without substituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group P-1 with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Interestingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with interstitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.

7.
Front Cell Infect Microbiol ; 14: 1413728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015339

RESUMO

Pseudomonas aeruginosa has already been stipulated as a "critical" pathogen, emphasizing the urgent need for researching and developing novel antibacterial agents due to multidrug resistance. Bacterial biofilm formation facilitates cystic fibrosis development and restricts the antibacterial potential of many current antibiotics. The capacity of P. aeruginosa to form biofilms and resist antibiotics is closely correlated with quorum sensing (QS). Bacterial QS is being contemplated as a promising target for developing novel antibacterial agents. QS inhibitors are a promising strategy for treating chronic infections. This study reported that the active compound PT22 (1H-pyrrole-2,5-dicarboxylic acid) isolated from Perenniporia tephropora FF2, one endophytic fungus from Areca catechu L., presents QS inhibitory activity against P. aeruginosa. Combined with gentamycin or piperacillin, PT22 functions as a novel antibiotic accelerant against P. aeruginosa. PT22 (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL) reduces the production of QS-related virulence factors, such as pyocyanin and rhamnolipid, and inhibits biofilm formation of P. aeruginosa PAO1 instead of affecting its growth. The architectural disruption of the biofilms was confirmed by visualization through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Real-time quantitative PCR (RT-qPCR) indicated that PT22 significantly attenuated the expression of QS-related genes followed by docking analysis of molecules against QS activator proteins. PT22 dramatically increased the survival rate of Galleria mellonella. PT22 combined with gentamycin or piperacillin presents significant inhibition of biofilm formation and eradication of mature biofilm compared to monotherapy, which was also confirmed by visualization through SEM and CLSM. After being treated with PT22 combined with gentamycin or piperacillin, the survival rates of G. mellonella were significantly increased compared to those of monotherapy. PT22 significantly enhanced the susceptibility of gentamycin and piperacillin against P. aeruginosa PAO1. Our results suggest that PT22 from P. tephropora FF2 as a potent QS inhibitor is a candidate antibiotic accelerant to combat the antibiotic resistance of P. aeruginosa.


Assuntos
Antibacterianos , Biofilmes , Pseudomonas aeruginosa , Pirróis , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pirróis/farmacologia , Animais , Fatores de Virulência/genética , Endófitos/química , Endófitos/metabolismo , Testes de Sensibilidade Microbiana , Ácidos Dicarboxílicos/farmacologia , Simulação de Acoplamento Molecular , Piocianina/metabolismo
8.
J Agric Food Chem ; 72(28): 15933-15947, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968025

RESUMO

Hydroxycinnamic acids, known for their health benefits and widespread presence in plant-based food, undergo complex transformations during high-temperature processing. Recent studies revealed a high browning potential of hydroxycinnamic acids and reactive Maillard reaction intermediates, but the role of phenolic compounds in the early stage of these reactions is not unambiguously understood. Therefore, we investigated the influence of caffeic acid and ferulic acid on the nonenzymatic browning of arabinose, galactose, and/or alanine, focusing on the implications on the formation of relevant early-stage Maillard intermediates and phenol-deriving products. Contrary to previous assumptions, hydroxycinnamic acids were found to promote nonenzymatic browning instead of solely trapping reactive intermediates. This was reflected by an intense browning, which was attributed to the formation of heterogeneous phenol-containing Maillard products. Although, caffeic acid is more reactive than ferulic acid, the formation of reactive furan derivatives and of heterogeneous phenol-containing colorants was promoted in the presence of both hydroxycinnamic acids.


Assuntos
Arabinose , Ácidos Cumáricos , Galactose , Reação de Maillard , Ácidos Cumáricos/química , Galactose/química , Arabinose/química , Temperatura Alta
9.
Beilstein J Org Chem ; 20: 1773-1784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076293

RESUMO

By one-pot four- and three-component Ugi reactions involving convertible isocyanides and unexplored pyrrole-containing ß-chlorovinylaldehyde, a small library of 20 bisamides with unusual behavior in post-Ugi transformations was prepared and characterized. Surprisingly, a well-documented approach to obtain peptide-containing carboxylic acids through acid hydrolysis of the convertible isocyanide moiety in the Ugi bisamides proceeded in an unexpected manner in our case, leading to the formation of derivatives of amides of heterylidenepyruvic acid. An optimized synthetic protocol for this transformation was elaborated and a plausible sequence involving the elimination of the 2-chloroacetamide moiety and the conversion of the ß-chlorovinyl fragment into a vinyl one is provided.

10.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999101

RESUMO

Electron-rich heteroaromatics, such as furan, thiophene and pyrrole, as well as their benzo-condensed derivatives, are of great interest as components of natural products and as starting substances for various products including high-tech materials. Although their reactions with Brønsted and Lewis acids play important roles, in particular as the primary step of various transformations, they are often disregarded and mechanistically not understood. The present publication gives a first overview about this chemistry focusing on the parent compounds. It comprises reactions with strong Brønsted acids forming adducts that can undergo intramolecular proton and/or substituent transfer reactions, ring openings or ring transformations into other heterocycles, depending on their structure. Interactions with weak Brønsted acids usually initiate oligomerizations/polymerizations. A similar behaviour is observed in reactions of these heteroaromatics with Lewis acids. Special effects are achieved when the Lewis acids are activated through primary protonation. Deuterated Brønsted acids allow straight forward deuteration of electron-rich heteroaromatics. Mercury salts as extremely weak Lewis acids cause direct metalation in a straight forward way replacing ring H-atoms yielding organomercury heterocycles. This review will provide comprehensive information about the chemistry of adducts of such heterocycles with Brønsted and Lewis acids enabling chemists to understand the mechanisms and the potential of this field and to apply the findings in future syntheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA