Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
ACS Nano ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980975

RESUMO

We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.

2.
Nature ; 631(8020): 283-284, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982236
3.
Nanophotonics ; 13(16): 2951-2959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39006136

RESUMO

Quantum photonic integrated circuits, composed of linear-optical elements, offer an efficient way for encoding and processing quantum information on-chip. At their core, these circuits rely on reconfigurable phase shifters, typically constructed from classical components such as thermo- or electro-optical materials, while quantum solid-state emitters such as quantum dots are limited to acting as single-photon sources. Here, we demonstrate the potential of quantum dots as reconfigurable phase shifters. We use numerical models based on established literature parameters to show that circuits utilizing these emitters enable high-fidelity operation and are scalable. Despite the inherent imperfections associated with quantum dots, such as imperfect coupling, dephasing, or spectral diffusion, we show that circuits based on these emitters may be optimized such that these do not significantly impact the unitary infidelity. Specifically, they do not increase the infidelity by more than 0.001 in circuits with up to 10 modes, compared to those affected only by standard nanophotonic losses and routing errors. For example, we achieve fidelities of 0.9998 in quantum-dot-based circuits enacting controlled-phase and - not gates without any redundancies. These findings demonstrate the feasibility of quantum emitter-driven quantum information processing and pave the way for cryogenically-compatible, fast, and low-loss reconfigurable quantum photonic circuits.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39016442

RESUMO

Molecular qubits are a promising platform for quantum information systems. Although single molecule and ensemble studies have assessed the performance of S = 1/2 molecules, it is understood that to function in devices, regular arrays of addressable qubits supported by a substrate are needed. The substrate imposes mechanical and electronic boundary conditions on the molecule; however, the impact of these effects on spin-lattice relaxation times is not well understood. Here we perform electronic structure calculations to assess the effects of a graphene (Cgr) substrate on the molecular qubit copper phthalocyanine (CuPc). We use a progressive Hessian approach to efficiently calculate and separate the substrate contributions. We also use a simple thermal model to predict the impact of these changes on the spin-phonon coupling from 0 to 200 K. Further analysis of the individual vibrational modes with and without Cgr shows that an overall increase in SPC between the vibrations modes of CuPc with the surface reduces the spin-lattice relaxation time T1. We explain these changes by examining how the substrate lifts symmetries of CuPc in the absorbed configuration. Our work shows that a surface can have a large unintentional impact on SPC and that ways to reduce this coupling need to be found to fully exploit arrays of molecular qubits in device architectures.

5.
Proc Natl Acad Sci U S A ; 121(24): e2311241121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838020

RESUMO

We present the experimental finding of multiple simultaneous two-fold degeneracies in the spectrum of a Kerr oscillator subjected to a squeezing drive. This squeezing drive resulting from a three-wave mixing process, in combination with the Kerr interaction, creates an effective static two-well potential in the phase space rotating at half the frequency of the sinusoidal drive generating the squeezing. Remarkably, these degeneracies can be turned on-and-off on demand, as well as their number by simply adjusting the frequency of the squeezing drive. We find that when the detuning Δ between the frequency of the oscillator and the second subharmonic of the drive equals an even multiple of the Kerr coefficient K, [Formula: see text], the oscillator displays [Formula: see text] exact, parity-protected, spectral degeneracies, insensitive to the drive amplitude. These degeneracies can be explained by the unusual destructive interference of tunnel paths in the classically forbidden region of the double well static effective potential that models our experiment. Exploiting this interference, we measure a peaked enhancement of the incoherent well-switching lifetime, thus creating a protected cat qubit in the ground state manifold of our oscillator. Our results illustrate the relationship between degeneracies and noise protection in a driven quantum system.

6.
ACS Appl Mater Interfaces ; 16(24): 31738-31746, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38843175

RESUMO

Assembling two-dimensional van der Waals (vdW)-layered materials into heterostructures is an exciting development that sparked the discovery of rich correlated electronic phenomena. vdW heterostructures also offer possibilities for designer device applications in areas such as optoelectronics, valley- and spintronics, and quantum technology. However, realizing the full potential of these heterostructures requires interfaces with exceptionally low disorder which is challenging to engineer. Here, we show that thermal scanning probes can be used to create pristine interfaces in vdW heterostructures. Our approach is compatible at both the material- and device levels, and monolayer WS2 transistors show up to an order of magnitude improvement in electrical performance from this technique. We also demonstrate vdW heterostructures with low interface disorder enabling the electrical formation and control of quantum dots that can be tuned from macroscopic current flow to the single-electron tunneling regime.

7.
Nature ; 629(8010): 50-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693404
8.
Nature ; 629(8013): 734-735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750204
9.
Entropy (Basel) ; 26(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785620

RESUMO

Quantum physics is intrinsically probabilistic, where the Born rule yields the probabilities associated with a state that deterministically evolves. The entropy of a quantum state quantifies the amount of randomness (or information loss) of such a state. The degrees of freedom of a quantum state are position and spin. We focus on the spin degree of freedom and elucidate the spin-entropy. Then, we present some of its properties and show how entanglement increases spin-entropy. A dynamic model for the time evolution of spin-entropy concludes the paper.

10.
Nat Phys ; 20(4): 564-570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638458

RESUMO

In recent years, important progress has been made towards encoding and processing quantum information in the large Hilbert space of bosonic modes. Mechanical resonators have several practical advantages for this purpose, because they confine many high-quality-factor modes into a small volume and can be easily integrated with different quantum systems. However, it is challenging to create direct interactions between different mechanical modes that can be used to emulate quantum gates. Here we demonstrate an in situ tunable beamsplitter-type interaction between several mechanical modes of a high-overtone bulk acoustic-wave resonator. The engineered interaction is mediated by a parametrically driven superconducting transmon qubit, and we show that it can be tailored to couple pairs or triplets of phononic modes. Furthermore, we use this interaction to demonstrate the Hong-Ou-Mandel effect between phonons. Our results lay the foundations for using phononic systems as quantum memories and platforms for quantum simulations.

11.
Chemphyschem ; 25(14): e202400030, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646938

RESUMO

Even though molecules are fundamentally quantum entities, the concept of a molecule retains certain classical attributes concerning its constituents. This includes the empirical separability of a molecule into its three-dimensional, rigid structure in Euclidean space, a framework often obtained through experimental methods like X-Ray crystallography. In this work, we delve into the mathematical implications of partitioning a molecule into its constituent parts using the widely recognized Atoms-In-Molecules (AIM) schemes, aiming to establish their validity within the framework of Information Theory concepts. We have uncovered information-theoretical justifications for employing some of the most prevalent AIM schemes in the field of Chemistry, including Hirshfeld (stockholder partitioning), Bader's (topological dissection), and the quantum approach (Hilbert's space definition). In the first approach we have applied the generalized principle of minimum relative entropy derived from the Sharma-Mittal two-parameter functional, avoiding the need for an arbitrary selection of reference promolecular atoms. Within the ambit of topological-information partitioning, we have demonstrated that the Fisher information of Bader's atoms conform to a comprehensive theory based on the Principle of Extreme Physical Information avoiding the need of employing the Schwinger's principle, which has been proven to be problematic. For the quantum approach we have presented information-theoretic justifications for conducting Löwdin symmetric transformations on the density matrix to form atomic Hilbert spaces generating orthonormal atomic orbitals with maximum occupancy for a given wavefunction.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38515928

RESUMO

Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.

13.
Entropy (Basel) ; 26(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539774

RESUMO

Kinetic theory provides modeling of open quantum systems subject to Markovian noise via the Wigner-Fokker-Planck equation, which is an alternate of the Lindblad master equation setting, having the advantage of great physical intuition as it is the quantum equivalent of the classical phase space description. We perform a numerical inspection of the Wehrl entropy for the benchmark problem of a harmonic potential, since the existence of a steady state and its analytical formula have been proven theoretically in this case. When there is friction in the noise terms, no theoretical results on the monotonicity of absolute entropy are available. We provide numerical results of the time evolution of the entropy in the case with friction using a stochastic (Euler-Maruyama-based Monte Carlo) numerical solver. For all the chosen initial conditions studied (all of them Gaussian states), up to the inherent numerical error of the method, one cannot disregard the possibility of monotonic behavior even in the case under study, where the noise includes friction terms.

14.
Artif Life ; 30(1): 16-27, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358121

RESUMO

In the mid-20th century, two new scientific disciplines emerged forcefully: molecular biology and information-communication theory. At the beginning, cross-fertilization was so deep that the term genetic code was universally accepted for describing the meaning of triplets of mRNA (codons) as amino acids. However, today, such synergy has not taken advantage of the vertiginous advances in the two disciplines and presents more challenges than answers. These challenges not only are of great theoretical relevance but also represent unavoidable milestones for next-generation biology: from personalized genetic therapy and diagnosis to Artificial Life to the production of biologically active proteins. Moreover, the matter is intimately connected to a paradigm shift needed in theoretical biology, pioneered a long time ago, that requires combined contributions from disciplines well beyond the biological realm. The use of information as a conceptual metaphor needs to be turned into quantitative and predictive models that can be tested empirically and integrated in a unified view. Successfully achieving these tasks requires a wide multidisciplinary approach, including Artificial Life researchers, to address such an endeavour.


Assuntos
Biologia , Código Genético
15.
Rep Prog Phys ; 87(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314645

RESUMO

Molecular nanomagnets (MNMs), molecules containing interacting spins, have been a playground for quantum mechanics. They are characterized by many accessible low-energy levels that can be exploited to store and process quantum information. This naturally opens the possibility of using them as qudits, thus enlarging the tools of quantum logic with respect to qubit-based architectures. These additional degrees of freedom recently prompted the proposal for encoding qubits with embedded quantum error correction (QEC) in single molecules. QEC is the holy grail of quantum computing and this qudit approach could circumvent the large overhead of physical qubits typical of standard multi-qubit codes. Another important strength of the molecular approach is the extremely high degree of control achieved in preparing complex supramolecular structures where individual qudits are linked preserving their individual properties and coherence. This is particularly relevant for building quantum simulators, controllable systems able to mimic the dynamics of other quantum objects. The use of MNMs for quantum information processing is a rapidly evolving field which still requires to be fully experimentally explored. The key issues to be settled are related to scaling up the number of qudits/qubits and their individual addressing. Several promising possibilities are being intensively explored, ranging from the use of single-molecule transistors or superconducting devices to optical readout techniques. Moreover, new tools from chemistry could be also at hand, like the chiral-induced spin selectivity. In this paper, we will review the present status of this interdisciplinary research field, discuss the open challenges and envisioned solution paths which could finally unleash the very large potential of molecular spins for quantum technologies.

16.
Adv Mater ; 36(25): e2314242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346232

RESUMO

Strain-engineering in atomically thin metal dichalcogenides is a useful method for realizing single-photon emitters (SPEs) for quantum technologies. Correlating SPE position with local strain topography is challenging due to localization inaccuracies from the diffraction limit. Currently, SPEs are assumed to be positioned at the highest strained location and are typically identified by randomly screening narrow-linewidth emitters, of which only a few are spectrally pure. In this work, hyperspectral quantum emitter localization microscopy is used to locate 33 SPEs in nanoparticle-strained WSe2 monolayers with sub-diffraction-limit resolution (≈30 nm) and correlate their positions with the underlying strain field via image registration. In this system, spectrally pure emitters are not concentrated at the highest strain location due to spectral contamination; instead, isolable SPEs are distributed away from points of peak strain with an average displacement of 240 nm. These observations point toward a need for a change in the design rules for strain-engineered SPEs and constitute a key step toward realizing next-generation quantum optical architectures.

17.
Entropy (Basel) ; 26(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392366

RESUMO

The universality of classical thermodynamics rests on the central limit theorem, due to which, measurements of thermal fluctuations are unable to reveal detailed information regarding the microscopic structure of a macroscopic body. When small systems are considered and fluctuations become important, thermodynamic quantities can be understood in the context of classical stochastic mechanics. A fundamental assumption behind thermodynamics is therefore that of coarse graining, which stems from a substantial lack of control over all degrees of freedom. However, when quantum systems are concerned, one claims a high level of control. As a consequence, information theory plays a major role in the identification of thermodynamic functions. Here, drawing from the concept of gauge symmetry-essential in all modern physical theories-we put forward a new possible intermediate route. Working within the realm of quantum thermodynamics, we explicitly construct physically motivated gauge transformations which encode a gentle variant of coarse graining behind thermodynamics. As a first application of this new framework, we reinterpret quantum work and heat, as well as the role of quantum coherence.

19.
Nano Lett ; 24(4): 1316-1323, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227973

RESUMO

Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.

20.
Nature ; 626(7997): 36-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38287183
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA