Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Magn Reson Med ; 92(3): 1149-1161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38650444

RESUMO

PURPOSE: To improve image quality, mitigate quantification biases and variations for free-breathing liver proton density fat fraction (PDFF) and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification accelerated by radial k-space undersampling. METHODS: A free-breathing multi-echo stack-of-radial MRI method was developed with compressed sensing with multidimensional regularization. It was validated in motion phantoms with reference acquisitions without motion and in 11 subjects (6 patients with nonalcoholic fatty liver disease) with reference breath-hold Cartesian acquisitions. Images, PDFF, and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed using different radial view k-space sampling factors and reconstruction settings. Results were compared with reference-standard results using Bland-Altman analysis. Using linear mixed-effects model fitting (p < 0.05 considered significant), mean and SD were evaluated for biases and variations of PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , respectively, and coefficient of variation on the first echo image was evaluated as a surrogate for image quality. RESULTS: Using the empirically determined optimal sampling factor of 0.25 in the accelerated in vivo protocols, mean differences and limits of agreement for the proposed method were [-0.5; -33.6, 32.7] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-1.0%; -5.8%, 3.8%] for PDFF, close to those of a previous self-gating method using fully sampled radial views: [-0.1; -27.1, 27.0] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-0.4%; -4.5%, 3.7%] for PDFF. The proposed method had significantly lower coefficient of variation than other methods (p < 0.001). Effective acquisition time of 64 s or 59 s was achieved, compared with 171 s or 153 s for two baseline protocols with different radial views corresponding to sampling factor of 1.0. CONCLUSION: This proposed method may allow accelerated free-breathing liver PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping with reduced biases and variations.


Assuntos
Processamento de Imagem Assistida por Computador , Fígado , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Feminino , Masculino , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Respiração , Algoritmos , Adulto , Reprodutibilidade dos Testes , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Movimento (Física) , Tecido Adiposo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Idoso
2.
NMR Biomed ; 37(8): e5136, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38514929

RESUMO

High acceleration factors in radial magnetic resonance fingerprinting (MRF) of the prostate lead to strong streak-like artefacts from flow in the femoral blood vessels, possibly concealing important anatomical information. Region-optimised virtual (ROVir) coils is a beamforming-based framework to create virtual coils that maximise signal in a region of interest while minimising signal in a region of interference. In this study, the potential of removing femoral flow streak artefacts in prostate MRF using ROVir coils is demonstrated in silico and in vivo. The ROVir framework was applied to radial MRF k-space data in an automated pipeline designed to maximise prostate signal while minimising signal from the femoral vessels. The method was tested in 15 asymptomatic volunteers at 3 T. The presence of streaks was visually assessed and measurements of whole prostate T1, T2 and signal-to-noise ratio (SNR) with and without streak correction were examined. In addition, a purpose-built simulation framework in which blood flow through the femoral vessels can be turned on and off was used to quantitatively evaluate ROVir's ability to suppress streaks in radial prostate MRF. In vivo it was shown that removing selected ROVir coils visibly reduces streak-like artefacts from the femoral blood flow, without increasing the reconstruction time. On average, 80% of the prostate SNR was retained. A similar reduction of streaks was also observed in silico, while the quantitative accuracy of T1 and T2 mapping was retained. In conclusion, ROVir coils efficiently suppress streaking artefacts from blood flow in radial MRF of the prostate, thereby improving the visual clarity of the images, without significant sacrifices to acquisition time, reconstruction time and accuracy of quantitative values. This is expected to help enable T1 and T2 mapping of prostate cancer in clinically viable times, aiding differentiation between prostate cancer from noncancer and healthy prostate tissue.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Próstata , Humanos , Masculino , Próstata/diagnóstico por imagem , Próstata/irrigação sanguínea , Adulto , Pessoa de Meia-Idade , Razão Sinal-Ruído , Simulação por Computador , Fêmur/diagnóstico por imagem , Fêmur/irrigação sanguínea
3.
Magn Reson Imaging ; 109: 42-48, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447629

RESUMO

PURPOSE: To evaluate the performance of high-resolution free-breathing (FB) hepatobiliary phase imaging of the liver using the eXtra-Dimension Golden-angle RAdial Sparse Parallel (XD-GRASP) MRI technique. METHODS: Fifty-eight clinical patients (41 males, mean age = 52.9 ± 12.9) with liver lesions who underwent dynamic contrast-enhanced MRI with a liver-specific contrast agent were prospectively recruited for this study. Both breath-hold volumetric interpolated examination (BH-VIBE) imaging and FB imaging were performed during the hepatobiliary phase. FB images were acquired using a stack-of-stars golden-angle radial sequence and were reconstructed using the XD-GRASP method. Two experienced radiologists blinded to acquisition schemes independently scored the overall image quality, liver edge sharpness, hepatic vessel clarity, conspicuity of lesion, and overall artifact level of each image. The non-parametric paired two-tailed Wilcoxon signed-rank test was used for statistical analysis. RESULTS: Compared to BH-VIBE images, XD-GRASP images received significantly higher scores (P < 0.05) for the liver edge sharpness (4.83 ± 0.45 vs 4.29 ± 0.46), the hepatic vessel clarity (4.64 ± 0.67 vs 4.15 ± 0.56) and the conspicuity of lesion (4.75 ± 0.53 vs 4.31 ± 0.50). There were no significant differences (P > 0.05) between BH-VIBE and XD-GRASP images for the overall image quality (4.61 ± 0.50 vs 4.74 ± 0.47) and the overall artifact level (4.13 ± 0.44 vs 4.05 ± 0.61). CONCLUSION: Compared to conventional BH-VIBE MRI, FB radial acquisition combined with XD-GRASP reconstruction facilitates higher spatial resolution imaging of the liver during the hepatobiliary phase. This enhancement can significantly improve the visualization and evaluation of the liver.


Assuntos
Interpretação de Imagem Assistida por Computador , Respiração , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Interpretação de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Suspensão da Respiração , Meios de Contraste , Artefatos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos
4.
Magn Reson Med ; 91(3): 1057-1066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929608

RESUMO

PURPOSE: To develop a self-navigated motion compensation strategy for 3D radial MRI that can compensate for continuous head motion by measuring rigid body motion parameters with high temporal resolution from the central k-space acquisition point (self-encoded FID navigator) in each radial spoke. METHODS: A forward model was created from low-resolution calibration data to simulate the effect of relative motion between the coil sensitivity profiles and the underlying object on the self-encoded FID navigator signal. Trajectory deviations were included in the model as low spatial-order field variations. Three volunteers were imaged at 3 T using a modified 3D gradient-echo sequence acquired with a Kooshball trajectory while performing abrupt and continuous head motion. Rigid body-motion parameters were estimated from the central k-space signal of each spoke using a least-squares fitting algorithm. The accuracy of self-navigated motion parameters was assessed relative to an established external tracking system. Quantitative image quality metrics were computed for images with and without retrospective correction using external and self-navigated motion measurements. RESULTS: Self-encoded FID navigators achieved mean absolute errors of 0.69 ± 0.82 mm and 0.73 ± 0.87° relative to external tracking for maximum motion amplitudes of 12 mm and 10°. Retrospective correction of the 3D radial data resulted in substantially improved image quality for both abrupt and continuous motion paradigms, comparable to external tracking results. CONCLUSIONS: Accurate rigid body motion parameters can be rapidly obtained from self-encoded FID navigator signals in 3D radial MRI to continuously correct for head movements. This approach is suitable for robust neuroanatomical imaging in subjects that exhibit patterns of large and frequent motion.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Artefatos , Encéfalo
5.
Magn Reson Med ; 91(5): 1965-1977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38084397

RESUMO

PURPOSE: To develop a highly-accelerated, real-time phase contrast (rtPC) MRI pulse sequence with 40 fps frame rate (25 ms effective temporal resolution). METHODS: Highly-accelerated golden-angle radial sparse parallel (GRASP) with over regularization may result in temporal blurring, which in turn causes underestimation of peak velocity. Thus, we amplified GRASP performance by synergistically combining view-sharing (VS) and k-space weighted image contrast (KWIC) filtering. In 17 pediatric patients with congenital heart disease (CHD), the conventional GRASP and the proposed GRASP amplified by VS and KWIC (or GRASP + VS + KWIC) reconstruction for rtPC MRI were compared with respect to clinical standard PC MRI in measuring hemodynamic parameters (peak velocity, forward volume, backward volume, regurgitant fraction) at four locations (aortic valve, pulmonary valve, left and right pulmonary arteries). RESULTS: The proposed reconstruction method (GRASP + VS + KWIC) achieved better effective spatial resolution (i.e., image sharpness) compared with conventional GRASP, ultimately reducing the underestimation of peak velocity from 17.4% to 6.4%. The hemodynamic metrics (peak velocity, volumes) were not significantly (p > 0.99) different between GRASP + VS + KWIC and clinical PC, whereas peak velocity was significantly (p < 0.007) lower for conventional GRASP. RtPC with GRASP + VS + KWIC also showed the ability to assess beat-to-beat variation and detect the highest peak among peaks. CONCLUSION: The synergistic combination of GRASP, VS, and KWIC achieves 25 ms effective temporal resolution (40 fps frame rate), while minimizing the underestimation of peak velocity compared with conventional GRASP.


Assuntos
Meios de Contraste , Cardiopatias Congênitas , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Pulmão , Artéria Pulmonar , Cardiopatias Congênitas/diagnóstico por imagem
6.
Magn Reson Med ; 91(4): 1541-1555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38084439

RESUMO

PURPOSE: The interaction between 129 Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re-establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE). METHODS: A six-zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One-point Dixon 129 Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE. RESULTS: For undersampled acquisitions, a key radius of 0.14 k max $$ 0.14{k}_{\mathrm{max}} $$ was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03). CONCLUSIONS: Digital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1-point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.


Assuntos
Hipertensão Pulmonar , Pneumopatias , Humanos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Eritrócitos , Isótopos de Xenônio
7.
Neural Netw ; 166: 704-721, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37604079

RESUMO

Computed tomography (CT) and magnetic resonance imaging (MRI) are two widely used clinical imaging modalities for non-invasive diagnosis. However, both of these modalities come with certain problems. CT uses harmful ionising radiation, and MRI suffers from slow acquisition speed. Both problems can be tackled by undersampling, such as sparse sampling. However, such undersampled data leads to lower resolution and introduces artefacts. Several techniques, including deep learning based methods, have been proposed to reconstruct such data. However, the undersampled reconstruction problem for these two modalities was always considered as two different problems and tackled separately by different research works. This paper proposes a unified solution for both sparse CT and undersampled radial MRI reconstruction, achieved by applying Fourier transform-based pre-processing on the radial MRI and then finally reconstructing both modalities using sinogram upsampling combined with filtered back-projection. The Primal-Dual network is a deep learning based method for reconstructing sparsely-sampled CT data. This paper introduces Primal-Dual UNet, which improves the Primal-Dual network in terms of accuracy and reconstruction speed. The proposed method resulted in an average SSIM of 0.932±0.021 while performing sparse CT reconstruction for fan-beam geometry with a sparsity level of 16, achieving a statistically significant improvement over the previous model, which resulted in 0.919±0.016. Furthermore, the proposed model resulted in 0.903±0.019 and 0.957±0.023 average SSIM while reconstructing undersampled brain and abdominal MRI data with an acceleration factor of 16, respectively - statistically significant improvements over the original model, which resulted in 0.867±0.025 and 0.949±0.025. Finally, this paper shows that the proposed network not only improves the overall image quality, but also improves the image quality for the regions-of-interest: liver, kidneys, and spleen; as well as generalises better than the baselines in presence the of a needle.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Artefatos , Encéfalo/diagnóstico por imagem
8.
Magn Reson Med ; 90(5): 1949-1957, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37317635

RESUMO

PURPOSE: To demonstrate the feasibility of high-resolution morphologic lung MRI at 0.55 T using a free-breathing balanced steady-state free precession half-radial dual-echo imaging technique (bSTAR). METHODS: Self-gated free-breathing bSTAR (TE1 /TE2 /TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR-scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k-space over multiple breathing cycles. WASP uses short-duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory-resolved images were reconstructed off-line using compressed sensing and retrospective self-gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. RESULTS: The technique provided artifact-free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off-resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. CONCLUSION: This study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem
9.
Phys Imaging Radiat Oncol ; 26: 100434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37034029

RESUMO

Background and purpose: Online adaptive magnetic resonance (MR)-guided treatment planning for pancreatic tumors on 1.5T systems typically employs Cartesian 3D T 2w magnetic resonance imaging (MRI). The main disadvantage of this sequence is that respiratory motion results in substantial blurring in the abdomen, which can hamper delineation accuracy. This study investigated the use of two motion-robust radial MRI sequences as main delineation scan for pancreatic MR-guided radiotherapy. Materials and methods: Twelve patients with pancreatic tumors were imaged with a 3D T 2w scan, a Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) scan (partially overlapping strips), and a 3D Vane scan (stack-of-stars), on a 1.5T MR-Linac under abdominal compression. The scans were assessed by three radiation oncologists for their suitability for online adaptive delineation. A quantitative comparison was made for gradient entropy and the effect of motion on apparent target position. Results: The PROPELLER scans were selected as first preference in 56% of the cases, the 3D T 2w in 42% and the 3D Vane in 3%. PROPELLER scans sometimes contained a large interslice variation which would have compromised delineation. Gradient entropy was significantly higher in 3D T 2w patient scans. The apparent target position was more sensitive to motion amplitude in the PROPELLER scans, but substantial offsets did not occur under 10 mm peak-to-peak. Conclusion: PROPELLER MRI may be a superior imaging sequence for pancreatic MRgRT compared to standard Cartesian sequences. The large interslice variation should be mitigated through further sequence optimization before PROPELLER can be adopted for online treatment adaptation.

10.
Magn Reson Imaging ; 99: 7-19, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36709010

RESUMO

MR Spin TomogrAphy in Time-domain ("MR-STAT") is quantitative MR technique in which multiple quantitative parameters are estimated from a single short scan by solving a large-scale non-linear optimization problem. In this work we extended the MR-STAT framework to non-Cartesian gradient trajectories. Cartesian MR-STAT and radial MR-STAT were compared in terms of time-efficiency and robustness in simulations, gel phantom measurements and in vivo measurements. In simulations, we observed that both Cartesian and radial MR-STAT are highly robust against undersampling. Radial MR-STAT does have a lower spatial encoding power because the outer corners of k-space are never sampled. However, especially in T2, this is compensated by a higher dynamic encoding power that comes from sampling the k-space center with each readout. In gel phantom measurements, Cartesian MR-STAT was observed to be robust against overfitting whereas radial MR-STAT suffered from high-frequency artefacts in the parameter maps at later iterations. These artefacts are hypothesized to be related to hardware imperfections and were (partially) suppressed with image filters. The time-efficiencies were higher for Cartesian MR-STAT in all vials. In-vivo, the radial reconstruction again suffered from overfitting artefacts. The robustness of Cartesian MR-STAT over the entire range of experiments may make it preferable in a clinical setting, despite radial MR-STAT resulting in a higher T1 time-efficiency in white matter.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
11.
Magn Reson Med ; 89(4): 1567-1585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36426730

RESUMO

PURPOSE: To develop a deep learning-based method for rapid liver proton-density fat fraction (PDFF) and R2 * quantification with built-in uncertainty estimation using self-gated free-breathing stack-of-radial MRI. METHODS: This work developed an uncertainty-aware physics-driven deep learning network (UP-Net) to (1) suppress radial streaking artifacts because of undersampling after self-gating, (2) calculate accurate quantitative maps, and (3) provide pixel-wise uncertainty maps. UP-Net incorporated a phase augmentation strategy, generative adversarial network architecture, and an MRI physics loss term based on a fat-water and R2 * signal model. UP-Net was trained and tested using free-breathing multi-echo stack-of-radial MRI data from 105 subjects. UP-Net uncertainty scores were calibrated in a validation dataset and used to predict quantification errors for liver PDFF and R2 * in a testing dataset. RESULTS: Compared with images reconstructed using compressed sensing (CS), UP-Net achieved structural similarity index >0.87 and normalized root mean squared error <0.18. Compared with reference quantitative maps generated using CS and graph-cut (GC) algorithms, UP-Net achieved low mean differences (MD) for liver PDFF (-0.36%) and R2 * (-0.37 s-1 ). Compared with breath-holding Cartesian MRI results, UP-Net achieved low MD for liver PDFF (0.53%) and R2 * (6.75 s-1 ). UP-Net uncertainty scores predicted absolute liver PDFF and R2 * errors with low MD of 0.27% and 0.12 s-1 compared to CS + GC results. The computational time for UP-Net was 79 ms/slice, whereas CS + GC required 3.2 min/slice. CONCLUSION: UP-Net rapidly calculates accurate liver PDFF and R2 * maps from self-gated free-breathing stack-of-radial MRI. The pixel-wise uncertainty maps from UP-Net predict quantification errors in the liver.


Assuntos
Aprendizado Profundo , Humanos , Incerteza , Interpretação de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Prótons
12.
Z Med Phys ; 33(2): 220-229, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35190223

RESUMO

PURPOSE: To demonstrate free-breathing thoracic MRI with a minimal-TR balanced steady-state free precession (bSSFP) technique using wobbling Archimedean spiral pole (WASP) trajectories. METHODS: Phantom and free-breathing in vivo chest imaging in healthy volunteers was performed at 1.5T with a half-radial, dual-echo, bSSFP sequence, termed bSTAR. For maximum sampling efficiency, a single analog-to-digital converter window along the full bipolar readout was used. To ensure a homogeneous coverage of the k-space over multiple breathing cycles, radial k-space sampling followed short-duration Archimedean spiral interleaves that were randomly titled by a small polar angle and rotated by a golden angle about the polar axis; depticting a wobbling Archimedean spiral pole (WASP) trajectory. In phantom and in vivo experiments, WASP trajectories were compared to spiral phyllotaxis sampling in terms of eddy currents and were used to generate in vivo thorax images at different respiratory phases. RESULTS: WASP trajectories provided artifact-free bSTAR imaging in both phantom and in vivo and respiratory self-gated reconstruction was successfully performed in all subjects. The amount of the acquired data allowed the reconstruction of 10 volumes at different respiratory levels with isotropic resolution of 1.77mm from a scan of 5.5minutes (using a TR of 1.32ms), and one high-resolution 1.16mm end-expiratory volume from a scan of 4.7minutes (using a TR of 1.42ms). The very short TR of bSTAR mitigated off-resonance artifacts despite the large field-of-view. CONCLUSION: We have demonstrated the feasibility of high-resolution free-breathing thoracic imaging with bSTAR using the wobbling Archimedean spiral pole in healthy subjects at 1.5T.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tórax/diagnóstico por imagem , Artefatos
13.
Magn Reson Med ; 89(5): 1853-1870, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36533868

RESUMO

PURPOSE: To extend and optimize a non-contrast MRI technique to obtain whole head 4D (time-resolved 3D) qualitative angiographic and perfusion images from a single scan. METHODS: 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) uses pseudocontinuous labeling with a 3D golden ratio ("koosh ball") readout to continuously image the blood water as it travels through the arterial system and exchanges into the tissue. High spatial/temporal resolution angiograms and low spatial/temporal resolution perfusion images can be flexibly reconstructed from the same raw k-space data. Constant and variable flip angle (CFA and VFA, respectively) excitation schedules were optimized through simulations and tested in healthy volunteers. A conventional sensitivity encoding (SENSE) reconstruction was compared against a locally low rank (LLR) reconstruction, which leverages spatiotemporal correlations. Comparison was also made with time-matched time-of-flight angiography and multi-delay EPI perfusion images. Differences in image quality were assessed through split-scan repeatability. RESULTS: The optimized VFA schedule (2-9°) resulted in a significant (p < 0.001) improvement in image quality (up to 84% vs. CFA), particularly for the lower SNR perfusion images. The LLR reconstruction provided effective denoising without biasing the signal timecourses, significantly improving angiographic and perfusion image quality and repeatability (up to 143%, p < 0.001). 4D CAPRIA performed well compared with time-of-flight angiography and had better perfusion signal repeatability than the EPI-based approach (p < 0.001). CONCLUSION: 4D CAPRIA optimized using a VFA schedule and LLR reconstruction can yield high quality whole head 4D angiograms and perfusion images from a single scan.


Assuntos
Imageamento Tridimensional , Angiografia por Ressonância Magnética , Humanos , Angiografia por Ressonância Magnética/métodos , Marcadores de Spin , Imageamento Tridimensional/métodos , Angiografia Cerebral/métodos , Perfusão
14.
NMR Biomed ; 35(12): e4803, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35891586

RESUMO

T1 mapping is increasingly used in clinical practice and research studies. With limited scan time, existing techniques often have limited spatial resolution, contrast resolution and slice coverage. High fat concentrations yield complex errors in Look-Locker T1 methods. In this study, a dual-echo 2D radial inversion-recovery T1 (DEradIR-T1) technique was developed for fast fat-water separated T1 mapping. The DEradIR-T1 technique was tested in phantoms, 5 volunteers and 28 patients using a 3 T clinical MRI scanner. In our study, simulations were performed to analyze the composite (fat + water) and water-only T1 under different echo times (TE). In standardized phantoms, an inversion-recovery spin echo (IR-SE) sequence with and without fat saturation pulses served as a T1 reference. Parameter mapping with DEradIR-T1 was also assessed in vivo, and values were compared with modified Look-Locker inversion recovery (MOLLI). Bland-Altman analysis and two-tailed paired t-tests were used to compare the parameter maps from DEradIR-T1 with the references. Simulations of the composite and water-only T1 under different TE values and levels of fat matched the in vivo studies. T1 maps from DEradIR-T1 on a NIST phantom (Pcomp = 0.97) and a Calimetrix fat-water phantom (Pwater = 0.56) matched with the references. In vivo T1 was compared with that of MOLLI: R comp 2 = 0.77 ; R water 2 = 0.72 . In this work, intravoxel fat is found to have a variable, echo-time-dependent effect on measured T1 values, and this effect may be mitigated using the proposed DRradIR-T1.


Assuntos
Imageamento por Ressonância Magnética , Água , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
15.
Magn Reson Imaging ; 92: 161-168, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777685

RESUMO

To explore and extend on dynamic imaging of joint motion, an MRI-safe device guiding knee motion with an attached rotary encoder was used in MRI measurements of multiple knee flexion-extension cycles using radial gradient echo imaging with the golden-angle as azimuthal angle increment. Reproducibility of knee motion was investigated. Real-time and CINE mode anatomical images were reconstructed for different knee flexion angles by synchronizing the encoder information with the MRI data, and performing flexion angle selective gating across multiple motion cycles. When investigating the influence of the rotation angle window width on reconstructed CINE images, it was found that angle windows between 0.5° and 3° exhibited acceptable image sharpness without suffering from significant motion-induced blurring. Furthermore, due to flexible retrospective image reconstruction afforded by the radial golden-angle imaging, the number of motion cycles included in the reconstruction could be retrospectively reduced to investigate the corresponding influence of acquisition time on image quality. Finally, motion reproducibility between motion cycles and accuracy of the flexion angle selective gating were sufficient to acquire whole-knee 3D dynamic imaging with a retrospectively gated 3D cone UTE sequence.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Interpretação de Imagem Assistida por Computador , Técnicas de Imagem de Sincronização Cardíaca/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
16.
Magn Reson Med ; 88(3): 1355-1369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608238

RESUMO

PURPOSE: In radial abdominal imaging, it has been commonly observed that signal from the arms cause streaks due to system imperfections. We previously introduced a streak removal technique (B-STAR), which is inherently spatially variant and limited to work in image space. In this work, we propose a spatially invariant streak cancellation technique (CACTUS), which can be applied in either image space or k-space and is compatible with iterative reconstructions. THEORY AND METHODS: Streak sources are typically spatially localized and can be represented using a low-dimensional subspace. CACTUS identifies the streak subspace by leveraging the spatial redundancy of receiver coils and projects the data onto the streak null space to eliminate the streaks. When applied in k-space, CACTUS can be combined with iterative reconstructions. CACTUS was tested in phantoms and in vivo abdominal imaging using a radial turbo spin-echo pulse sequence. RESULTS: In phantoms, CACTUS improved T2 estimation in comparison to previous de-streaking methods. In vivo experiments showed that CACTUS reduced streaks and yielded T2 estimation, in regions affected by streaks, closer to a streak-free reference. Evaluation using a clinical abdominal dataset (n = 20) showed that CACTUS is comparable to B-STAR and yields significantly better signal preservation and streak cancellation than coil removal and suppression methods. CONCLUSION: CACTUS provides superior signal preservation and streak reduction performance compared to coil removal and suppression methods. As a clear advantage over B-STAR, CACTUS can be integrated with iterative reconstruction methods. In abdominal T2 mapping, CACTUS improves the accuracy of parameter estimation in areas affected by streaks.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Abdome/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
17.
J Magn Reson Imaging ; 55(5): 1407-1416, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34545639

RESUMO

BACKGROUND: Hepatic iron content (HIC) is an important parameter for the management of iron overload. Non-invasive HIC assessment is often performed using biopsy-calibrated two-dimensional breath-hold Cartesian gradient echo (2D BH GRE) R2* -MRI. However, breath-holding is not possible in most pediatric patients or those with respiratory problems, and three-dimensional free-breathing radial GRE (3D FB rGRE) has emerged as a viable alternative. PURPOSE: To evaluate the performance of a 3D FB rGRE and validate its R2* and fat fraction (FF) quantification with 3D breath-hold Cartesian GRE (3D BH cGRE) and biopsy-calibrated 2D BH GRE across a wide range of HICs. STUDY TYPE: Retrospective. SUBJECTS: Twenty-nine patients with hepatic iron overload (22 females, median age: 15 [5-25] years). FIELD STRENGTH/SEQUENCE: Three-dimensional radial and 2D and 3D Cartesian multi-echo GRE at 1.5 T. ASSESSMENT: R2* and FF maps were computed for 3D GREs using a multi-spectral fat model and 2D GRE R2* maps were calculated using a mono-exponential model. Mean R2* and FF values were calculated via whole-liver contouring and T2* -thresholding by three operators. STATISTICAL TESTS: Inter- and intra-observer reproducibility was assessed using Bland-Altman and intraclass correlation coefficient (ICC). Linear regression and Bland-Altman analysis were performed to compare R2* and FF values among the three acquisitions. One-way repeated-measures ANOVA and Wilcoxon signed-rank tests, respectively, were used to test for significant differences between R2* and FF values obtained with different acquisitions. Statistical significance was assumed at P < 0.05. RESULTS: The mean biases and ICC for inter- and intra-observer reproducibility were close to 0% and >0.99, respectively for both R2* and FF. The 3D FB rGRE R2* and FF values were not significantly different (P > 0.44) and highly correlated (R2 ≥ 0.98) with breath-hold Cartesian GREs, with mean biases ≤ ±2.5% and slopes 0.90-1.12. In non-breath-holding patients, Cartesian GREs showed motion artifacts, whereas 3D FB rGRE exhibited only minimal streaking artifacts. DATA CONCLUSION: Free-breathing 3D radial GRE is a viable alternative in non-breath-hold patients for accurate HIC estimation. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Sobrecarga de Ferro , Ferro , Adolescente , Biópsia , Criança , Feminino , Humanos , Sobrecarga de Ferro/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos
18.
Magn Reson Imaging ; 85: 141-152, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662702

RESUMO

PURPOSE: To investigate the agreement, intra-session repeatability, and inter-reader agreement of liver proton-density fat fraction (PDFF) and R2* quantification using free-breathing 3D stack-of-radial MRI, with and without self-gated motion compensation, compared to reference breath-hold techniques in subjects with fatty liver disease (FLD). METHODS: In this institutional review board-approved prospective study, thirty-eight adults with FLD and/or iron overload (24 male, 58 ± 12 years) were imaged at 3T using free-breathing stack-of-radial MRI, breath-hold 3D Cartesian MRI, and breath-hold single-voxel MR spectroscopy (SVS). Each sequence was acquired twice in random order. To assess agreement compared to reference breath-hold techniques, the dependency of liver PDFF and/or R2* quantification on the sequence, radial sampling factor, and radial self-gating temporal resolution was assessed by calculating the Bayesian mean difference (MDB) of the posteriors. Intra-session repeatability and inter-reader agreement (two independent readers) were assessed by the coefficient of repeatability (CR) and intraclass correlation coefficient (ICC), respectively. RESULTS: Thirty-five participants (21 male, 57 ± 12 years) were included for analysis. Both free-breathing radial MRI techniques (with and without self-gating) achieved ICC ≥ 0.92 for quantifying PDFF and R2*, and quantified PDFF with MDB < 1.2% compared to breath-hold techniques. Free-breathing radial MRI required self-gating to accurately quantify R2* (MDB < 10s-1 with self-gating; MDB < 50s-1 without self-gating). The radial sampling factor affected PDFF and R2* quantification while the radial self-gating temporal resolution only affected R2* quantification. Repeated self-gated free-breathing radial MRI scans achieved CR < 3% and CR < 27 s-1 for PDFF and R2*, respectively. CONCLUSION: A free-breathing stack-of-radial MRI technique with self-gating demonstrated agreement, repeatability, and inter-reader agreement compared to reference breath-hold techniques for quantification of liver PDFF and R2* in adults with FLD.


Assuntos
Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica , Adulto , Teorema de Bayes , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Prospectivos
19.
Magn Reson Med ; 87(4): 1863-1875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34850452

RESUMO

PURPOSE: To develop an auto-calibrated image reconstruction for highly accelerated multi-directional phase-contrast (PC) MRI that compensates for (1) reconstruction instabilities occurring for phase differences near ± π and (2) phase errors by concomitant magnetic fields that differ for individual radial spokes. THEORY AND METHODS: A model-based image reconstruction for real-time PC MRI based on nonlinear inversion is extended to multi-directional flow by exploiting multiple flow-encodings for the estimation of velocity vectors. An initial smoothing constraint during iterative optimization is introduced to resolve the ambiguity of the solution space by penalizing phase wraps. Maxwell terms are considered as part of the signal model on a line-by-line basis to address phase errors by concomitant magnetic fields. The reconstruction methods are evaluated using simulated data and cross-sectional imaging of a rotating-disc, as well as in vivo for the aortic arch and cervical spinal canal at 3T. RESULTS: Real-time three-directional velocity mapping in the aortic arch is achieved at 1.8 × 1.8 × 6 mm3 spatial and 60 ms temporal resolution. Artificial phase wraps are avoided in all cases using the smoothness constraint. Inter-spoke differences of concomitant magnetic fields are effectively compensated for by the model-based image reconstruction with integrated radial Maxwell correction. CONCLUSION: Velocity vector reconstructions based on nonlinear inversion allow for high degrees of radial data undersampling paving the way for multi-directional PC MRI in real time. Whether a spoke-wise treatment of Maxwell terms is required or a computationally cheaper frame-wise approach depends on the individual application.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Aorta Torácica , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
20.
Magn Reson Med ; 87(1): 281-291, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412158

RESUMO

PURPOSE: To develop an accelerated k-space shift calibration method for free-breathing 3D stack-of-radial MRI quantification of liver proton-density fat fraction (PDFF) and R2∗ . METHODS: Accelerated k-space shift calibration was developed to partially skip acquisition of k-space shift data in the through-plane direction then interpolate in processing, as well as to reduce the in-plane averages. A multi-echo stack-of-radial sequence with the baseline calibration was evaluated on a phantom versus vendor-provided reference-standard PDFF and R2∗ values at 1.5T, and in 13 healthy subjects and 5 clinical subjects at 3T with respect to reference-standard breath-hold Cartesian acquisitions. PDFF and R2∗ maps were calculated with different calibration acceleration factors offline and compared to reference-standard values using Bland-Altman analysis. Bias and uncertainty were evaluated using normal distribution and Bayesian probability of difference (P < .05 considered significant). RESULTS: Bland-Altman plots of phantom and in vivo data showed that substantial acceleration was highly feasible in both through-plane and in-plane directions. Compared to the baseline calibration without acceleration, Bayesian analysis revealed no significant differences on biases and uncertainties of PDFF and R2∗ measurements with all acceleration methods in this study, except the method with through-plane acceleration equaling slices and averages equaling 20 for PDFF and R2∗ (both P < .001) for the phantom. A six-fold reduction in equivalent calibration acquisition time (time saving ≥25 s and ≥80.7%) was achieved using recommended acceleration factors for the in vivo protocols in this study. CONCLUSION: This proposed method may allow accelerated calibration for free-breathing stack-of-radial MRI PDFF and R2∗ mapping.


Assuntos
Fígado , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Teorema de Bayes , Calibragem , Humanos , Fígado/diagnóstico por imagem , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA