Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dokl Biol Sci ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128952

RESUMO

The influence of meteorological factors and anthropogenic air pollution on the radial growth of the Scots pine Pinus sylvestris L. was studied as dependent on the distance from the Pechenganickel mining and metallurgical plant (Nikel, Murmansk region). Three (control, buffer, and impact) zones of the pollution gradient were identified based on the contents of main polluting elements (S, Ni, and Cu) in the forest litter. A significant weakening of pine stands was observed in the impact zone and attributed to the combined effect of long-term anthropogenic pollution of the 1970s and unfavorable weather events of the mid-1980s. As the emission decreased from 1988 to 2018, the radial increment of P. sylvestris was observed to increase significantly (by up to 44%) in the impact zone and to remain much the same in the control and buffer zones. More recently, the radial increment of trees in the impact zone reached and even exceeded the values observed in the control zone, although the trees examined were relatively old. The finding demonstrated again the high adaptive capacity of P. sylvestris.

2.
Life (Basel) ; 12(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430997

RESUMO

The purpose of our study was to assess the individual variability of the response to climatic conditions of the radial increment of Pinus sylvestris L. trees aged 100-140 years. The studied pine stand grows in the conditions of a site with a heterogeneous microrelief in the Voronezh Reserve. The calculated coefficients of synchronicity and correlation of radial increment of a sample of individual Scots pine trees (wood cores). It has been established that in the radial increment of pine trees in the Voronezh Reserve, there is a significant diversity in the reflection of the climatic signal, which, as a rule, manifests itself in certain years that are not extreme in terms of climatic conditions. The reasons for the differentiated reaction of trees to climate are the differentiated conditions of the microrelief, and also, probably, the genetic diversity of forest stands. In natural stands there are individual trees showing very low values of synchronicity coefficients (GLK, %) or correlation coefficients (CC, %) with stand average values. Intrapopulation differences in the response of pine forest stands to fluctuations in climatic factors are one of the forms of protective mechanisms for the survival of a species that have developed as a result of evolutionary development. As our study showed, intrapopulation differences are large in stands of natural origin and not subject to anthropogenic impacts.

3.
Plants (Basel) ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736722

RESUMO

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is a non-native tree species in Slovenia with the potential to partially replace Norway spruce in our native forests. Compared to spruce, it has several advantages in terms of volume growth, wood quality and tolerance to drought. This is important given the changing climate in which spruce is confronted with serious problems caused by increasing temperatures and drought stress. At three sites (one on non-carbonate bedrock and deep soils, and two on limestone with soil layers of varying depths), 20 Douglas-fir and 20 spruce per site were sampled in order to compare their radial growth response to climate and drought events. The radial growth of Douglas-fir exceeds that of spruce by about 20% on comparable sites. It is more responsive to climate than spruce. Above-average temperatures in February and March have a significant positive effect on the radial growth of Douglas-fir. In recent decades, above-average summer precipitation has also had a positive influence on the radial growth of Douglas-fir. Compared to spruce, Douglas-fir is less sensitive to extreme drought events. Our results indicate that Douglas-fir may be a good substitute for spruce in semi-natural managed forest stands in Slovenia. The planting of Douglas-fir should be allowed in Slovenian forests, but the proportion of it in forest stands should be kept lower than is the case with spruce today.

4.
Environ Pollut ; 233: 92-98, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29059630

RESUMO

Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers of global change.


Assuntos
Poluentes Atmosféricos/toxicidade , Mudança Climática , Fagus/fisiologia , Florestas , Nitrogênio/toxicidade , Biomassa , Ecossistema , Monitoramento Ambiental , Fagus/efeitos dos fármacos , Raízes de Plantas , Temperatura , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA